Bagel-7B-Demo / modeling /bagel /qwen2_navit.py
KingNish's picture
Update
12a0dd9 verified
# Copyright (c) 2024 The Qwen Team and The HuggingFace Inc. team.
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
#
# Original file was released under Apache-2.0, with the full license text
# available at https://github.com/huggingface/transformers/blob/main/LICENSE.
#
# This modified file is released under the same license.
from dataclasses import dataclass
from functools import partial
from typing import List, Optional, Tuple
import torch
from torch import nn
from torch.nn.attention import SDPBackend, sdpa_kernel
from torch.nn.attention.flex_attention import flex_attention
from torch.nn.functional import scaled_dot_product_attention
from transformers.utils import ModelOutput
from flash_attn import flash_attn_varlen_func
from modeling.qwen2.modeling_qwen2 import (
Qwen2Attention,
Qwen2MLP,
Qwen2PreTrainedModel,
Qwen2RMSNorm,
Qwen2RotaryEmbedding,
apply_rotary_pos_emb,
)
from modeling.qwen2.configuration_qwen2 import Qwen2Config as _Qwen2Config
torch._dynamo.config.cache_size_limit = 512
torch._dynamo.config.accumulated_cache_size_limit = 4096
# flex_attention = torch.compile(flex_attention) # , dynamic=True, mode='max-autotune'
flex_attention = torch.compile(flex_attention)
class Qwen2Config(_Qwen2Config):
r"""
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2Model`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22016):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 32):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import Qwen2Model, Qwen2Config
>>> # Initializing a Qwen2 style configuration
>>> configuration = Qwen2Config()
>>> # Initializing a model from the Qwen2-7B style configuration
>>> model = Qwen2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=4096,
intermediate_size=22016,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=32,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
is_causal=True,
_attn_implementation="flash_attention_2",
qk_norm=True,
layer_module="Qwen2DecoderLayer",
freeze_und=False,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
initializer_range=initializer_range,
rms_norm_eps=rms_norm_eps,
use_cache=use_cache,
tie_word_embeddings=tie_word_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
use_sliding_window=use_sliding_window,
sliding_window=sliding_window,
max_window_layers=max_window_layers,
attention_dropout=attention_dropout,
is_causal=is_causal,
_attn_implementation=_attn_implementation,
**kwargs,
)
self.qk_norm = qk_norm
self.layer_module = layer_module
self.freeze_und = freeze_und
class NaiveCache:
def __init__(self, num_layers):
self.key_cache = {k: None for k in range(num_layers)}
self.value_cache = {k: None for k in range(num_layers)}
@property
def num_layers(self):
return len(self.key_cache)
@property
def seq_lens(self):
if self.key_cache[0] is not None:
return self.key_cache[0].shape[0]
else:
return 0
@dataclass
class BaseNavitOutputWithPast(ModelOutput):
packed_query_sequence: torch.FloatTensor = None
past_key_values: Optional[NaiveCache] = None
def pad_sequence(tensor, pad_size):
H, L, D = tensor.shape
pad_tensor = tensor.new_zeros((H, pad_size, D))
return torch.cat([tensor, pad_tensor], dim=1)
class PackedAttention(Qwen2Attention):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
if self.config.qk_norm:
self.q_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
def forward(self, *args, **kwargs):
if self.training:
return self.forward_train(*args, **kwargs)
else:
return self.forward_inference(*args, **kwargs)
def forward_train(
self,
packed_sequence: torch.Tensor,
sample_lens: List[int],
attention_mask: List[torch.Tensor],
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
):
packed_query_states = self.q_proj(packed_sequence).view(-1, self.num_heads, self.head_dim)
packed_key_states = self.k_proj(packed_sequence).view(-1, self.num_key_value_heads, self.head_dim)
packed_value_states = self.v_proj(packed_sequence).view(-1, self.num_key_value_heads, self.head_dim)
packed_query_states = self.q_norm(packed_query_states)
packed_key_states = self.k_norm(packed_key_states)
packed_cos, packed_sin = packed_position_embeddings
packed_query_states, packed_key_states = apply_rotary_pos_emb(
packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1
)
if isinstance(attention_mask, List):
packed_key_states = packed_key_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
packed_key_states = packed_key_states.reshape(-1, self.num_heads, self.head_dim)
packed_value_states = packed_value_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
packed_value_states = packed_value_states.reshape(-1, self.num_heads, self.head_dim)
unpacked_query_states = packed_query_states.transpose(0, 1).split(sample_lens, dim=1)
unpacked_key_states = packed_key_states.transpose(0, 1).split(sample_lens, dim=1)
unpacked_value_states = packed_value_states.transpose(0, 1).split(sample_lens, dim=1)
upacked_attn_output = []
for query_states, key_states, value_states, attention_mask_per_sample in zip(
unpacked_query_states, unpacked_key_states, unpacked_value_states, attention_mask
):
with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]):
attn_output = scaled_dot_product_attention(
query_states.to(torch.bfloat16).unsqueeze(0),
key_states.to(torch.bfloat16).unsqueeze(0),
value_states.to(torch.bfloat16).unsqueeze(0),
attention_mask_per_sample.to(torch.bfloat16).unsqueeze(0),
)
upacked_attn_output.append(attn_output.squeeze(0))
packed_attn_output = torch.cat(upacked_attn_output, dim=1)
else:
pad_size = sum(sample_lens) - packed_query_states.shape[0]
packed_query_states = pad_sequence(packed_query_states.permute(1, 0, 2), pad_size)
packed_key_states = pad_sequence(packed_key_states.permute(1, 0, 2), pad_size)
packed_value_states = pad_sequence(packed_value_states.permute(1, 0, 2), pad_size)
packed_attn_output = flex_attention(
packed_query_states.unsqueeze(0),
packed_key_states.unsqueeze(0),
packed_value_states.unsqueeze(0),
enable_gqa=True,
block_mask=attention_mask,
)
end_index = packed_attn_output.shape[2] - pad_size
packed_attn_output = packed_attn_output[0, :, :end_index, :]
packed_attn_output = packed_attn_output.transpose(0, 1).reshape(-1, self.hidden_size)
packed_attn_output = self.o_proj(packed_attn_output)
return packed_attn_output
def forward_inference(
self,
packed_query_sequence: torch.Tensor,
query_lens: torch.Tensor,
packed_query_position_embeddings: torch.Tensor,
packed_query_indexes: torch.Tensor,
past_key_values: Optional[NaiveCache] = None,
key_values_lens: Optional[torch.Tensor] = None,
packed_key_value_indexes: Optional[torch.Tensor] = None,
update_past_key_values=True,
is_causal=True,
):
packed_query_states = self.q_proj(packed_query_sequence).view(-1, self.num_heads, self.head_dim)
packed_key_states = self.k_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
packed_value_states = self.v_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
packed_query_states = self.q_norm(packed_query_states)
packed_key_states = self.k_norm(packed_key_states)
packed_cos, packed_sin = packed_query_position_embeddings
packed_query_states, packed_key_states = apply_rotary_pos_emb(
packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1
)
packed_query_states = packed_query_states.to(torch.bfloat16)
packed_key_states = packed_key_states.to(torch.bfloat16)
packed_value_states = packed_value_states.to(torch.bfloat16)
if past_key_values is not None and past_key_values.key_cache[self.layer_idx] is not None:
past_key_states = past_key_values.key_cache[self.layer_idx]
past_value_states = past_key_values.value_cache[self.layer_idx]
seqlens = sum(query_lens) + sum(key_values_lens)
merged_key_states = past_key_states.new_zeros((seqlens, self.num_key_value_heads, self.head_dim))
merged_value_states = past_key_states.new_zeros((seqlens, self.num_key_value_heads, self.head_dim))
merged_key_states[packed_query_indexes] = packed_key_states
merged_key_states[packed_key_value_indexes] = past_key_states
merged_value_states[packed_query_indexes] = packed_value_states
merged_value_states[packed_key_value_indexes] = past_value_states
key_values_lens = key_values_lens + query_lens
else:
merged_key_states = packed_key_states
merged_value_states = packed_value_states
key_values_lens = query_lens
cu_seqlens_q = torch.nn.functional.pad(torch.cumsum(query_lens, dim=0), (1, 0))
cu_seqlens_k = torch.nn.functional.pad(torch.cumsum(key_values_lens, dim=0), (1, 0))
packed_attn_output = flash_attn_varlen_func(
q=packed_query_states,
k=merged_key_states,
v=merged_value_states,
cu_seqlens_q=cu_seqlens_q.to(torch.int32),
cu_seqlens_k=cu_seqlens_k.to(torch.int32),
max_seqlen_q=max(query_lens).item(),
max_seqlen_k=max(key_values_lens).item(),
causal=is_causal,
)
packed_attn_output = packed_attn_output.reshape(-1, self.hidden_size)
packed_attn_output = self.o_proj(packed_attn_output)
if update_past_key_values:
past_key_values.key_cache[self.layer_idx] = merged_key_states
past_key_values.value_cache[self.layer_idx] = merged_value_states
return packed_attn_output, past_key_values
class PackedAttentionMoT(Qwen2Attention):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
if self.config.qk_norm:
self.q_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.q_norm_moe_gen = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm_moe_gen = Qwen2RMSNorm(self.head_dim, eps=config.rms_norm_eps)
else:
self.q_norm = nn.Identity()
self.k_norm = nn.Identity()
self.q_norm_moe_gen = nn.Identity()
self.k_norm_moe_gen = nn.Identity()
self.q_proj_moe_gen = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
self.k_proj_moe_gen = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.v_proj_moe_gen = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
self.o_proj_moe_gen = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(self, *args, **kwargs):
if self.training:
return self.forward_train(*args, **kwargs)
else:
return self.forward_inference(*args, **kwargs)
def forward_train(
self,
packed_sequence: torch.Tensor,
sample_lens: List[int],
attention_mask,
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
packed_und_token_indexes: torch.LongTensor,
packed_gen_token_indexes: torch.LongTensor,
):
packed_query_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_heads * self.head_dim))
packed_key_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_key_value_heads * self.head_dim))
packed_value_states = packed_sequence.new_zeros((packed_sequence.shape[0], self.num_key_value_heads * self.head_dim))
packed_sequence_und = packed_sequence[packed_und_token_indexes]
packed_sequence_gen = packed_sequence[packed_gen_token_indexes]
packed_query_states[packed_und_token_indexes] = self.q_proj(packed_sequence_und)
packed_query_states[packed_gen_token_indexes] = self.q_proj_moe_gen(packed_sequence_gen)
packed_key_states[packed_und_token_indexes] = self.k_proj(packed_sequence_und)
packed_key_states[packed_gen_token_indexes] = self.k_proj_moe_gen(packed_sequence_gen)
packed_value_states[packed_und_token_indexes] = self.v_proj(packed_sequence_und)
packed_value_states[packed_gen_token_indexes] = self.v_proj_moe_gen(packed_sequence_gen)
packed_query_states = packed_query_states.view(-1, self.num_heads, self.head_dim)
packed_key_states = packed_key_states.view(-1, self.num_key_value_heads, self.head_dim)
packed_value_states = packed_value_states.view(-1, self.num_key_value_heads, self.head_dim)
if self.config.freeze_und:
packed_value_states[packed_und_token_indexes] = packed_value_states[packed_und_token_indexes].detach()
packed_query_states_ = packed_query_states.new_zeros(packed_query_states.shape)
packed_key_states_ = packed_key_states.new_zeros(packed_key_states.shape)
packed_query_states_[packed_und_token_indexes] = self.q_norm(packed_query_states[packed_und_token_indexes])
if self.config.freeze_und:
packed_query_states_[packed_und_token_indexes] = packed_query_states_[packed_und_token_indexes].detach()
packed_query_states_[packed_gen_token_indexes] = self.q_norm_moe_gen(packed_query_states[packed_gen_token_indexes])
packed_key_states_[packed_und_token_indexes] = self.k_norm(packed_key_states[packed_und_token_indexes])
if self.config.freeze_und:
packed_key_states_[packed_und_token_indexes] = packed_key_states_[packed_und_token_indexes].detach()
packed_key_states_[packed_gen_token_indexes] = self.k_norm_moe_gen(packed_key_states[packed_gen_token_indexes])
packed_cos, packed_sin = packed_position_embeddings
packed_query_states_, packed_key_states_ = apply_rotary_pos_emb(
packed_query_states_, packed_key_states_, packed_cos, packed_sin, unsqueeze_dim=1
)
if isinstance(attention_mask, List):
packed_key_states_ = packed_key_states_[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
packed_key_states_ = packed_key_states_.reshape(-1, self.num_heads, self.head_dim)
packed_value_states = packed_value_states[:, :, None, :].repeat(1, 1, self.num_key_value_groups, 1)
packed_value_states = packed_value_states.reshape(-1, self.num_heads, self.head_dim)
unpacked_query_states = packed_query_states_.transpose(0, 1).split(sample_lens, dim=1)
unpacked_key_states = packed_key_states_.transpose(0, 1).split(sample_lens, dim=1)
unpacked_value_states = packed_value_states.transpose(0, 1).split(sample_lens, dim=1)
upacked_attn_output = []
for query_states, key_states, value_states, attention_mask_per_sample in zip(
unpacked_query_states, unpacked_key_states, unpacked_value_states, attention_mask
):
with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]):
attn_output = scaled_dot_product_attention(
query_states.to(torch.bfloat16).unsqueeze(0),
key_states.to(torch.bfloat16).unsqueeze(0),
value_states.to(torch.bfloat16).unsqueeze(0),
attention_mask_per_sample.to(torch.bfloat16).unsqueeze(0),
)
upacked_attn_output.append(attn_output.squeeze(0))
packed_attn_output = torch.cat(upacked_attn_output, dim=1)
else:
pad_size = sum(sample_lens) - packed_query_states.shape[0]
packed_query_states_ = pad_sequence(packed_query_states_.permute(1, 0, 2), pad_size)
packed_key_states_ = pad_sequence(packed_key_states_.permute(1, 0, 2), pad_size)
packed_value_states = pad_sequence(packed_value_states.permute(1, 0, 2), pad_size)
packed_attn_output = flex_attention(
packed_query_states_.unsqueeze(0), # 1, num_head, L, head_dim
packed_key_states_.unsqueeze(0),
packed_value_states.unsqueeze(0),
enable_gqa=True,
block_mask=attention_mask,
)
end_index = packed_attn_output.shape[2] - pad_size
packed_attn_output = packed_attn_output[0, :, :end_index, :]
packed_attn_output = packed_attn_output.transpose(0, 1).reshape(-1, self.num_heads * self.head_dim)
packed_attn_output_ = packed_attn_output.new_zeros(packed_attn_output.shape)
packed_attn_output_[packed_und_token_indexes] = self.o_proj(packed_attn_output[packed_und_token_indexes])
packed_attn_output_[packed_gen_token_indexes] = self.o_proj_moe_gen(packed_attn_output[packed_gen_token_indexes])
return packed_attn_output_
def forward_inference(
self,
packed_query_sequence: torch.Tensor,
query_lens: torch.Tensor,
packed_query_position_embeddings: torch.Tensor,
packed_query_indexes: torch.Tensor,
past_key_values: Optional[NaiveCache] = None,
key_values_lens: Optional[torch.Tensor] = None,
packed_key_value_indexes: Optional[torch.Tensor] = None,
update_past_key_values=True,
is_causal=True,
mode="und",
packed_vae_token_indexes=None,
packed_text_indexes=None,
):
if mode == 'und':
packed_query_states = self.q_proj(packed_query_sequence).view(-1, self.num_heads, self.head_dim)
packed_key_states = self.k_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
packed_value_states = self.v_proj(packed_query_sequence).view(-1, self.num_key_value_heads, self.head_dim)
packed_query_states = self.q_norm(packed_query_states)
packed_key_states = self.k_norm(packed_key_states)
elif mode == 'gen':
packed_query_sequence = packed_query_sequence.to(torch.bfloat16)
packed_query_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_heads * self.head_dim))
packed_key_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_key_value_heads * self.head_dim))
packed_value_states = packed_query_sequence.new_zeros((packed_query_sequence.shape[0], self.num_key_value_heads * self.head_dim))
packed_text_query_sequence = packed_query_sequence[packed_text_indexes]
packed_vae_query_sequence = packed_query_sequence[packed_vae_token_indexes]
packed_query_states[packed_text_indexes] = self.q_proj(packed_text_query_sequence)
packed_query_states[packed_vae_token_indexes] = self.q_proj_moe_gen(packed_vae_query_sequence)
packed_key_states[packed_text_indexes] = self.k_proj(packed_text_query_sequence)
packed_key_states[packed_vae_token_indexes] = self.k_proj_moe_gen(packed_vae_query_sequence)
packed_value_states[packed_text_indexes] = self.v_proj(packed_text_query_sequence)
packed_value_states[packed_vae_token_indexes] = self.v_proj_moe_gen(packed_vae_query_sequence)
packed_query_states = packed_query_states.view(-1, self.num_heads, self.head_dim)
packed_key_states = packed_key_states.view(-1, self.num_key_value_heads, self.head_dim)
packed_value_states = packed_value_states.view(-1, self.num_key_value_heads, self.head_dim)
packed_query_states = packed_query_states.to(torch.float32)
packed_query_states[packed_text_indexes] = self.q_norm(packed_query_states[packed_text_indexes])
packed_query_states[packed_vae_token_indexes] = self.q_norm_moe_gen(packed_query_states[packed_vae_token_indexes])
packed_key_states = packed_key_states.to(torch.float32)
packed_key_states[packed_text_indexes] = self.k_norm(packed_key_states[packed_text_indexes])
packed_key_states[packed_vae_token_indexes] = self.k_norm_moe_gen(packed_key_states[packed_vae_token_indexes])
packed_cos, packed_sin = packed_query_position_embeddings
packed_query_states, packed_key_states = apply_rotary_pos_emb(
packed_query_states, packed_key_states, packed_cos, packed_sin, unsqueeze_dim=1
)
packed_query_states = packed_query_states.to(torch.bfloat16)
packed_key_states = packed_key_states.to(torch.bfloat16)
packed_value_states = packed_value_states.to(torch.bfloat16)
if past_key_values is not None and past_key_values.key_cache[self.layer_idx] is not None:
past_key_states = past_key_values.key_cache[self.layer_idx]
past_value_states = past_key_values.value_cache[self.layer_idx]
seqlens = sum(query_lens) + sum(key_values_lens)
merged_key_states = past_key_states.new_zeros(size=[seqlens, self.num_key_value_heads, self.head_dim])
merged_value_states = past_key_states.new_zeros(size=[seqlens, self.num_key_value_heads, self.head_dim])
merged_key_states[packed_query_indexes] = packed_key_states
merged_key_states[packed_key_value_indexes] = past_key_states
merged_value_states[packed_query_indexes] = packed_value_states
merged_value_states[packed_key_value_indexes] = past_value_states
key_values_lens = key_values_lens + query_lens
else:
merged_key_states = packed_key_states
merged_value_states = packed_value_states
key_values_lens = query_lens
cu_seqlens_q = torch.nn.functional.pad(torch.cumsum(query_lens, dim=0), (1, 0))
cu_seqlens_k = torch.nn.functional.pad(torch.cumsum(key_values_lens, dim=0), (1, 0))
packed_attn_output = flash_attn_varlen_func(
q=packed_query_states,
k=merged_key_states,
v=merged_value_states,
cu_seqlens_q=cu_seqlens_q.to(torch.int32),
cu_seqlens_k=cu_seqlens_k.to(torch.int32),
max_seqlen_q=max(query_lens).item(),
max_seqlen_k=max(key_values_lens).item(),
causal=is_causal,
)
packed_attn_output = packed_attn_output.reshape(-1, self.hidden_size)
if mode == 'und':
packed_attn_output = self.o_proj(packed_attn_output)
elif mode == 'gen':
packed_attn_output[packed_text_indexes] = self.o_proj(packed_attn_output[packed_text_indexes])
packed_attn_output[packed_vae_token_indexes] = self.o_proj_moe_gen(packed_attn_output[packed_vae_token_indexes])
if update_past_key_values:
past_key_values.key_cache[self.layer_idx] = merged_key_states
past_key_values.value_cache[self.layer_idx] = merged_value_states
return packed_attn_output, past_key_values
class Qwen2DecoderLayer(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = PackedAttention(config, layer_idx)
self.mlp = Qwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, *args, **kwargs):
if self.training:
return self.forward_train(*args, **kwargs)
else:
return self.forward_inference(*args, **kwargs)
def forward_train(
self,
packed_sequence: torch.Tensor,
sample_lens: List[int],
attention_mask,
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
) -> torch.Tensor:
residual = packed_sequence
packed_sequence = self.input_layernorm(packed_sequence)
# Self Attention
packed_sequence = self.self_attn(
packed_sequence=packed_sequence,
sample_lens=sample_lens,
attention_mask=attention_mask,
packed_position_embeddings=packed_position_embeddings,
)
packed_sequence = residual + packed_sequence
# Fully Connected
residual = packed_sequence
packed_sequence = self.post_attention_layernorm(packed_sequence)
packed_sequence = self.mlp(packed_sequence)
packed_sequence = residual + packed_sequence
return packed_sequence
def forward_inference(
self,
packed_query_sequence: torch.Tensor,
query_lens: torch.Tensor,
packed_query_position_embeddings: torch.Tensor,
packed_query_indexes: torch.Tensor,
past_key_values: Optional[NaiveCache] = None,
key_values_lens: Optional[torch.Tensor] = None,
packed_key_value_indexes: Optional[torch.Tensor] = None,
update_past_key_values=True,
is_causal=True,
) -> BaseNavitOutputWithPast:
residual = packed_query_sequence
packed_query_sequence = self.input_layernorm(packed_query_sequence)
# Self Attention
packed_query_sequence, past_key_values = self.self_attn(
packed_query_sequence=packed_query_sequence,
query_lens=query_lens,
packed_query_position_embeddings=packed_query_position_embeddings,
packed_query_indexes=packed_query_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=update_past_key_values,
is_causal=is_causal,
)
packed_query_sequence = residual + packed_query_sequence
# Fully Connected
residual = packed_query_sequence
packed_query_sequence = self.post_attention_layernorm(packed_query_sequence)
packed_query_sequence = self.mlp(packed_query_sequence)
packed_query_sequence = residual + packed_query_sequence
return packed_query_sequence, past_key_values
class Qwen2MoTDecoderLayer(nn.Module):
def __init__(
self,
config,
layer_idx: Optional[int] = None,
attn_module: Optional[Qwen2Attention] = PackedAttentionMoT,
):
super().__init__()
self.hidden_size = config.hidden_size
self.freeze_und = config.freeze_und
self.self_attn = attn_module(config, layer_idx)
self.mlp = Qwen2MLP(config)
self.mlp_moe_gen = Qwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.input_layernorm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, *args, **kwargs):
if self.training:
return self.forward_train(*args, **kwargs)
else:
return self.forward_inference(*args, **kwargs)
def forward_train(
self,
packed_sequence: torch.Tensor,
sample_lens: List[int],
attention_mask,
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
packed_und_token_indexes: torch.LongTensor,
packed_gen_token_indexes: torch.LongTensor,
) -> torch.Tensor:
residual = packed_sequence
packed_sequence_ = packed_sequence.new_zeros(packed_sequence.shape)
packed_sequence_[packed_und_token_indexes] = self.input_layernorm(packed_sequence[packed_und_token_indexes])
packed_sequence_[packed_gen_token_indexes] = self.input_layernorm_moe_gen(packed_sequence[packed_gen_token_indexes])
# Self Attention
packed_sequence_ = self.self_attn(
packed_sequence=packed_sequence_,
sample_lens=sample_lens,
attention_mask=attention_mask,
packed_position_embeddings=packed_position_embeddings,
packed_und_token_indexes=packed_und_token_indexes,
packed_gen_token_indexes=packed_gen_token_indexes,
)
if self.freeze_und:
packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach()
packed_sequence = residual + packed_sequence_
# Fully Connected
residual = packed_sequence
packed_sequence_ = packed_sequence.new_zeros(packed_sequence.shape)
packed_sequence_[packed_und_token_indexes] = self.mlp(
self.post_attention_layernorm(packed_sequence[packed_und_token_indexes])
)
if self.freeze_und:
packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach()
packed_sequence_[packed_gen_token_indexes] = self.mlp_moe_gen(
self.post_attention_layernorm_moe_gen(packed_sequence[packed_gen_token_indexes])
)
packed_sequence = residual + packed_sequence_
return packed_sequence
def forward_inference(
self,
packed_query_sequence: torch.Tensor,
query_lens: torch.Tensor,
packed_query_position_embeddings: torch.Tensor,
packed_query_indexes: torch.Tensor,
past_key_values: Optional[NaiveCache] = None,
key_values_lens: Optional[torch.Tensor] = None,
packed_key_value_indexes: Optional[torch.Tensor] = None,
update_past_key_values=True,
is_causal=True,
mode="und",
packed_vae_token_indexes=None,
packed_text_indexes=None,
) -> BaseNavitOutputWithPast:
residual = packed_query_sequence
if mode == "und":
packed_query_sequence = self.input_layernorm(packed_query_sequence)
elif mode == "gen":
packed_query_sequence_ = torch.zeros_like(packed_query_sequence)
packed_query_sequence_[packed_text_indexes] = self.input_layernorm(packed_query_sequence[packed_text_indexes])
packed_query_sequence_[packed_vae_token_indexes] = self.input_layernorm_moe_gen(packed_query_sequence[packed_vae_token_indexes])
packed_query_sequence = packed_query_sequence_
# Self Attention
packed_query_sequence, past_key_values = self.self_attn(
packed_query_sequence=packed_query_sequence,
query_lens=query_lens,
packed_query_position_embeddings=packed_query_position_embeddings,
packed_query_indexes=packed_query_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=update_past_key_values,
is_causal=is_causal,
mode=mode,
packed_vae_token_indexes=packed_vae_token_indexes,
packed_text_indexes=packed_text_indexes,
)
packed_query_sequence = residual + packed_query_sequence
# Fully Connected
residual = packed_query_sequence
if mode == "und":
packed_query_sequence = self.post_attention_layernorm(packed_query_sequence)
packed_query_sequence = self.mlp(packed_query_sequence)
elif mode == "gen":
packed_text_query_sequence = packed_query_sequence[packed_text_indexes]
packed_vae_query_sequence = packed_query_sequence[packed_vae_token_indexes]
packed_text_query_sequence = self.post_attention_layernorm(packed_text_query_sequence).to(torch.bfloat16)
packed_vae_query_sequence = self.post_attention_layernorm_moe_gen(packed_vae_query_sequence).to(torch.bfloat16)
packed_query_sequence_ = torch.zeros_like(packed_query_sequence).to(torch.bfloat16)
packed_query_sequence_[packed_text_indexes] = self.mlp(packed_text_query_sequence)
packed_query_sequence_[packed_vae_token_indexes] = self.mlp_moe_gen(packed_vae_query_sequence)
packed_query_sequence = packed_query_sequence_
packed_query_sequence = residual + packed_query_sequence
return packed_query_sequence, past_key_values
class Qwen2MoEDecoderLayer(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = PackedAttention(config, layer_idx)
self.mlp = Qwen2MLP(config)
self.mlp_moe_gen = Qwen2MLP(config)
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, *args, **kwargs):
if self.training:
return self.forward_train(*args, **kwargs)
else:
return self.forward_inference(*args, **kwargs)
def forward_train(
self,
packed_sequence: torch.Tensor,
sample_lens: List[int],
attention_mask,
packed_position_embeddings: Tuple[torch.Tensor, torch.Tensor],
packed_und_token_indexes: torch.LongTensor,
packed_gen_token_indexes: torch.LongTensor,
) -> torch.Tensor:
residual = packed_sequence
packed_sequence = self.input_layernorm(packed_sequence)
# Self Attention
packed_sequence = self.self_attn(
packed_sequence=packed_sequence,
sample_lens=sample_lens,
attention_mask=attention_mask,
packed_position_embeddings=packed_position_embeddings,
)
packed_sequence = residual + packed_sequence
# Fully Connected
residual = packed_sequence
packed_sequence = self.post_attention_layernorm(packed_sequence)
packed_sequence_new = packed_sequence.new_zeros(packed_sequence.shape)
packed_sequence_und = self.mlp(packed_sequence[packed_und_token_indexes])
packed_sequence_gen = self.mlp_moe_gen(packed_sequence[packed_gen_token_indexes])
packed_sequence_new[packed_und_token_indexes] = packed_sequence_und
packed_sequence_new[packed_gen_token_indexes] = packed_sequence_gen
packed_sequence = residual + packed_sequence_new
return packed_sequence
def forward_inference(
self,
packed_query_sequence: torch.Tensor,
query_lens: torch.Tensor,
packed_query_position_embeddings: torch.Tensor,
packed_query_indexes: torch.Tensor,
past_key_values: Optional[NaiveCache] = None,
key_values_lens: Optional[torch.Tensor] = None,
packed_key_value_indexes: Optional[torch.Tensor] = None,
update_past_key_values=True,
is_causal=True,
mode="und",
packed_vae_token_indexes=None,
packed_text_indexes=None,
) -> BaseNavitOutputWithPast:
residual = packed_query_sequence
packed_query_sequence = self.input_layernorm(packed_query_sequence)
# Self Attention
packed_query_sequence, past_key_values = self.self_attn(
packed_query_sequence=packed_query_sequence,
query_lens=query_lens,
packed_query_position_embeddings=packed_query_position_embeddings,
packed_query_indexes=packed_query_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=update_past_key_values,
is_causal=is_causal,
)
packed_query_sequence = residual + packed_query_sequence
# Fully Connected
residual = packed_query_sequence
packed_query_sequence = self.post_attention_layernorm(packed_query_sequence)
if mode == "und":
packed_query_sequence = self.mlp(packed_query_sequence)
elif mode == "gen":
packed_query_sequence_ = torch.zeros_like(packed_query_sequence).to(torch.bfloat16)
packed_query_sequence_[packed_text_indexes] = self.mlp(packed_query_sequence[packed_text_indexes])
packed_query_sequence_[packed_vae_token_indexes] = self.mlp_moe_gen(packed_query_sequence[packed_vae_token_indexes])
packed_query_sequence = packed_query_sequence_
packed_query_sequence = residual + packed_query_sequence
return packed_query_sequence, past_key_values
Decoder_layer_dict = {
"Qwen2DecoderLayer": Qwen2DecoderLayer,
"Qwen2MoEDecoderLayer": Qwen2MoEDecoderLayer,
"Qwen2MoTDecoderLayer": partial(Qwen2MoTDecoderLayer, attn_module=PackedAttentionMoT),
}
class Qwen2Model(Qwen2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.use_moe = 'Mo' in config.layer_module
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
layer_module = Decoder_layer_dict[config.layer_module]
self.layers = nn.ModuleList(
[layer_module(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
if self.use_moe:
self.norm_moe_gen = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
# Initialize weights and apply final processing
self.post_init()
def forward(self, *args, **kwargs):
if self.training:
return self.forward_train(*args, **kwargs)
else:
return self.forward_inference(*args, **kwargs)
def forward_train(
self,
packed_sequence: torch.Tensor,
sample_lens: List[int],
attention_mask,
packed_position_ids: torch.Tensor,
packed_und_token_indexes: Optional[torch.LongTensor] = None,
packed_gen_token_indexes: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
if self.config.freeze_und:
packed_sequence[packed_und_token_indexes] = packed_sequence[packed_und_token_indexes].detach()
# create position embeddings to be shared across the decoder layers
cos, sin = self.rotary_emb(packed_sequence, packed_position_ids.unsqueeze(0))
cos = cos.squeeze(0)
sin = sin.squeeze(0)
packed_position_embeddings = (cos, sin)
extra_inputs = {}
if self.use_moe:
assert packed_und_token_indexes is not None
if packed_gen_token_indexes is None:
packed_gen_token_indexes = packed_und_token_indexes.new_ones(size=[0])
extra_inputs.update(
packed_und_token_indexes=packed_und_token_indexes,
packed_gen_token_indexes=packed_gen_token_indexes,
)
for decoder_layer in self.layers:
packed_sequence = decoder_layer(
packed_sequence=packed_sequence,
sample_lens=sample_lens,
attention_mask=attention_mask,
packed_position_embeddings=packed_position_embeddings,
**extra_inputs
)
if self.use_moe:
packed_sequence_ = torch.zeros_like(packed_sequence)
packed_sequence_[packed_und_token_indexes] = self.norm(packed_sequence[packed_und_token_indexes])
if self.config.freeze_und:
packed_sequence_[packed_und_token_indexes] = packed_sequence_[packed_und_token_indexes].detach()
packed_sequence_[packed_gen_token_indexes] = self.norm_moe_gen(packed_sequence[packed_gen_token_indexes])
return packed_sequence_
else:
return self.norm(packed_sequence)
def forward_inference(
self,
packed_query_sequence: torch.Tensor,
query_lens: torch.Tensor,
packed_query_position_ids: torch.Tensor,
packed_query_indexes: torch.Tensor,
past_key_values: Optional[NaiveCache] = None,
key_values_lens: Optional[torch.Tensor] = None,
packed_key_value_indexes: Optional[torch.Tensor] = None,
update_past_key_values=True,
is_causal=True,
mode="und",
packed_vae_token_indexes=None,
packed_text_indexes=None,
) -> BaseNavitOutputWithPast:
# create position embeddings to be shared across the decoder layers
cos, sin = self.rotary_emb(packed_query_sequence, packed_query_position_ids.unsqueeze(0))
cos = cos.squeeze(0)
sin = sin.squeeze(0)
packed_query_position_embeddings = (cos, sin)
extra_inputs = {}
if self.use_moe:
extra_inputs.update(mode=mode)
if mode == 'gen':
assert packed_vae_token_indexes is not None
assert packed_text_indexes is not None
extra_inputs.update(
packed_vae_token_indexes=packed_vae_token_indexes,
packed_text_indexes=packed_text_indexes,
)
for decoder_layer in self.layers:
packed_query_sequence, past_key_values = decoder_layer(
packed_query_sequence=packed_query_sequence,
query_lens=query_lens,
packed_query_position_embeddings=packed_query_position_embeddings,
packed_query_indexes=packed_query_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=update_past_key_values,
is_causal=is_causal,
**extra_inputs,
)
if self.use_moe:
if mode == "und":
packed_query_sequence = self.norm(packed_query_sequence)
elif mode == "gen":
packed_query_sequence_ = torch.zeros_like(packed_query_sequence)
packed_query_sequence_[packed_text_indexes] = self.norm(packed_query_sequence[packed_text_indexes])
packed_query_sequence_[packed_vae_token_indexes] = self.norm_moe_gen(packed_query_sequence[packed_vae_token_indexes])
packed_query_sequence = packed_query_sequence_
else:
packed_query_sequence = self.norm(packed_query_sequence)
return BaseNavitOutputWithPast(
packed_query_sequence=packed_query_sequence,
past_key_values=past_key_values,
)
class Qwen2ForCausalLM(Qwen2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = Qwen2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def init_moe(self):
for name, param in self.named_parameters():
if "moe_gen" in name:
original_name = name.replace("_moe_gen", "")
param.data.copy_(self.state_dict()[original_name].data)
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(self, *args, **kwargs):
if self.training:
return self.forward_train(*args, **kwargs)
else:
return self.forward_inference(*args, **kwargs)
def forward_train(
self,
packed_sequence: torch.Tensor,
sample_lens: List[int],
attention_mask,
packed_position_ids: torch.Tensor,
packed_und_token_indexes: Optional[torch.LongTensor] = None,
packed_gen_token_indexes: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
outputs = self.model(
packed_sequence=packed_sequence,
sample_lens=sample_lens,
packed_position_ids=packed_position_ids,
attention_mask=attention_mask,
packed_und_token_indexes=packed_und_token_indexes,
packed_gen_token_indexes=packed_gen_token_indexes,
)
return outputs
def forward_inference(
self,
packed_query_sequence: torch.Tensor,
query_lens: torch.Tensor,
packed_query_position_ids: torch.Tensor,
packed_query_indexes: torch.Tensor,
past_key_values: Optional[NaiveCache] = None,
key_values_lens: Optional[torch.Tensor] = None,
packed_key_value_indexes: Optional[torch.Tensor] = None,
update_past_key_values=True,
is_causal=True,
mode="und",
packed_vae_token_indexes=None,
packed_text_indexes=None,
) -> BaseNavitOutputWithPast:
outputs = self.model(
packed_query_sequence=packed_query_sequence,
query_lens=query_lens,
packed_query_position_ids=packed_query_position_ids,
packed_query_indexes=packed_query_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=update_past_key_values,
is_causal=is_causal,
mode=mode,
packed_vae_token_indexes=packed_vae_token_indexes,
packed_text_indexes=packed_text_indexes,
)
return outputs