Voice_Cloning / TTS /vocoder /models /hifigan_discriminator.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
7.24 kB
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py
import torch
from torch import nn
from torch.nn import functional as F
LRELU_SLOPE = 0.1
class DiscriminatorP(torch.nn.Module):
"""HiFiGAN Periodic Discriminator
Takes every Pth value from the input waveform and applied a stack of convoluations.
Note:
if `period` is 2
`waveform = [1, 2, 3, 4, 5, 6 ...] --> [1, 3, 5 ... ] --> convs -> score, feat`
Args:
x (Tensor): input waveform.
Returns:
[Tensor]: discriminator scores per sample in the batch.
[List[Tensor]]: list of features from each convolutional layer.
Shapes:
x: [B, 1, T]
"""
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super().__init__()
self.period = period
get_padding = lambda k, d: int((k * d - d) / 2)
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.parametrizations.weight_norm
self.convs = nn.ModuleList(
[
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
]
)
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
[Tensor]: discriminator scores per sample in the batch.
[List[Tensor]]: list of features from each convolutional layer.
Shapes:
x: [B, 1, T]
"""
feat = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
feat.append(x)
x = self.conv_post(x)
feat.append(x)
x = torch.flatten(x, 1, -1)
return x, feat
class MultiPeriodDiscriminator(torch.nn.Module):
"""HiFiGAN Multi-Period Discriminator (MPD)
Wrapper for the `PeriodDiscriminator` to apply it in different periods.
Periods are suggested to be prime numbers to reduce the overlap between each discriminator.
"""
def __init__(self, use_spectral_norm=False):
super().__init__()
self.discriminators = nn.ModuleList(
[
DiscriminatorP(2, use_spectral_norm=use_spectral_norm),
DiscriminatorP(3, use_spectral_norm=use_spectral_norm),
DiscriminatorP(5, use_spectral_norm=use_spectral_norm),
DiscriminatorP(7, use_spectral_norm=use_spectral_norm),
DiscriminatorP(11, use_spectral_norm=use_spectral_norm),
]
)
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
[List[Tensor]]: list of scores from each discriminator.
[List[List[Tensor]]]: list of list of features from each discriminator's each convolutional layer.
Shapes:
x: [B, 1, T]
"""
scores = []
feats = []
for _, d in enumerate(self.discriminators):
score, feat = d(x)
scores.append(score)
feats.append(feat)
return scores, feats
class DiscriminatorS(torch.nn.Module):
"""HiFiGAN Scale Discriminator.
It is similar to `MelganDiscriminator` but with a specific architecture explained in the paper.
Args:
use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm.
"""
def __init__(self, use_spectral_norm=False):
super().__init__()
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.parametrizations.weight_norm
self.convs = nn.ModuleList(
[
norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)),
norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)),
norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
]
)
self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
Tensor: discriminator scores.
List[Tensor]: list of features from the convolutiona layers.
"""
feat = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
feat.append(x)
x = self.conv_post(x)
feat.append(x)
x = torch.flatten(x, 1, -1)
return x, feat
class MultiScaleDiscriminator(torch.nn.Module):
"""HiFiGAN Multi-Scale Discriminator.
It is similar to `MultiScaleMelganDiscriminator` but specially tailored for HiFiGAN as in the paper.
"""
def __init__(self):
super().__init__()
self.discriminators = nn.ModuleList(
[
DiscriminatorS(use_spectral_norm=True),
DiscriminatorS(),
DiscriminatorS(),
]
)
self.meanpools = nn.ModuleList([nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)])
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
List[Tensor]: discriminator scores.
List[List[Tensor]]: list of list of features from each layers of each discriminator.
"""
scores = []
feats = []
for i, d in enumerate(self.discriminators):
if i != 0:
x = self.meanpools[i - 1](x)
score, feat = d(x)
scores.append(score)
feats.append(feat)
return scores, feats
class HifiganDiscriminator(nn.Module):
"""HiFiGAN discriminator wrapping MPD and MSD."""
def __init__(self):
super().__init__()
self.mpd = MultiPeriodDiscriminator()
self.msd = MultiScaleDiscriminator()
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
List[Tensor]: discriminator scores.
List[List[Tensor]]: list of list of features from each layers of each discriminator.
"""
scores, feats = self.mpd(x)
scores_, feats_ = self.msd(x)
return scores + scores_, feats + feats_