Dr. Khushter Kaifi commited on
Commit
07f221b
1 Parent(s): 9c853b2

Create app.py

Browse files

Created a app.py file

Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Finacial Sentiment Analysis Using Huggingface App
2
+ # Team Name :- Free Thinkers
3
+ # Authors:- Lalit Chaudhary and Khushter Kaifi
4
+ # Update On- 2 Jan 2024
5
+
6
+ # streamlit is a Python library used for creating web applications with minimal effort.
7
+ # pipeline is a class from the Hugging Face Transformers library that allows you to easily use pre-trained models for various natural language processing (NLP) tasks
8
+
9
+ import streamlit as st
10
+ from transformers import pipeline
11
+
12
+ # This line creates a sentiment analysis pipeline using the Hugging Face Transformers library.
13
+ # The pipeline is pre-configured to perform sentiment analysis on input text.
14
+ # # Load sentiment analysis pipeline
15
+ sentiment_pipeline = pipeline("sentiment-analysis")
16
+
17
+ # Sets the title of the Streamlit web application
18
+ st.title("Financial Sentiment Analysis Using HuggingFace \n Team Name:- Free Thinkers")
19
+
20
+ # Displays a text input box where the user can enter a sentence for sentiment analysis.
21
+ st.write("Enter a Sentence to Analyze the Sentiment:")
22
+ user_input = st.text_input("")
23
+ st.write("Press the Enter key")
24
+
25
+ # Performing Sentiment Analysis:
26
+ # Checks if the user has entered some text. If yes,
27
+ # it uses the sentiment_pipeline to analyze the sentiment of the input text and stores the result in the result variable.
28
+
29
+ if user_input:
30
+ result = sentiment_pipeline(user_input)
31
+ sentiment = result[0]["label"]
32
+ confidence = result[0]["score"]
33
+
34
+
35
+ # Displaying Results:
36
+ #If there is user input, it displays the sentiment and confidence score.
37
+ # The sentiment is extracted from the "label" field in the result, and the confidence score is extracted from the "score" field.
38
+ st.write(f"Sentiment: {sentiment}")
39
+ st.write(f"Confidence: {confidence:.2%}")