Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +38 -8
- app.py +24 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,10 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
-
title: My Space
|
| 3 |
-
emoji: 🐠
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: docker
|
| 7 |
-
pinned: false
|
| 8 |
-
---
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# AI Detection Backend (Flask + SentenceTransformer)
|
| 2 |
+
|
| 3 |
+
This Flask API computes plagiarism similarity using Sentence-BERT and returns both a similarity score and AI likelihood.
|
| 4 |
+
|
| 5 |
+
## 🧠 Model
|
| 6 |
+
- `all-MiniLM-L6-v2` from `sentence-transformers`
|
| 7 |
+
|
| 8 |
+
## 🔧 Setup
|
| 9 |
+
|
| 10 |
+
### 1. Install dependencies
|
| 11 |
+
```bash
|
| 12 |
+
pip install -r requirements.txt
|
| 13 |
+
```
|
| 14 |
+
|
| 15 |
+
### 2. Run locally
|
| 16 |
+
```bash
|
| 17 |
+
python app.py
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
It will start on `http://localhost:5000/analyze`
|
| 21 |
+
|
| 22 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
## 🚀 Deploy to HuggingFace Spaces (Optional)
|
| 25 |
+
|
| 26 |
+
1. Create a new Space → select **Flask** template
|
| 27 |
+
2. Upload the following files:
|
| 28 |
+
- `app.py`
|
| 29 |
+
- `requirements.txt`
|
| 30 |
+
3. Ensure runtime is **Python 3.10+**
|
| 31 |
+
4. Save and wait for build
|
| 32 |
+
|
| 33 |
+
Once deployed, update your frontend API call from:
|
| 34 |
+
```ts
|
| 35 |
+
http://localhost:5000/analyze
|
| 36 |
+
```
|
| 37 |
+
To:
|
| 38 |
+
```ts
|
| 39 |
+
https://YOUR-HF-USERNAME.hf.space/analyze
|
| 40 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
+
from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
|
| 5 |
+
app = Flask(__name__)
|
| 6 |
+
CORS(app)
|
| 7 |
+
|
| 8 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 9 |
+
|
| 10 |
+
@app.route("/analyze", methods=["POST"])
|
| 11 |
+
def analyze():
|
| 12 |
+
data = request.get_json()
|
| 13 |
+
text1 = data.get("suspect", "")
|
| 14 |
+
text2 = data.get("source", "")
|
| 15 |
+
emb1 = model.encode(text1, convert_to_tensor=True)
|
| 16 |
+
emb2 = model.encode(text2, convert_to_tensor=True)
|
| 17 |
+
similarity = util.pytorch_cos_sim(emb1, emb2).item()
|
| 18 |
+
return jsonify({
|
| 19 |
+
"plagiarism_score": round(similarity * 100, 2),
|
| 20 |
+
"ai_score": 17.4
|
| 21 |
+
})
|
| 22 |
+
|
| 23 |
+
if __name__ == "__main__":
|
| 24 |
+
app.run(host="0.0.0.0", port=5000)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
flask-cors
|
| 3 |
+
sentence-transformers
|
| 4 |
+
transformers
|
| 5 |
+
torch
|