KhadijaAsehnoune12 commited on
Commit
fc5c4f6
1 Parent(s): 7bdac5a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -39
app.py CHANGED
@@ -37,52 +37,21 @@ def predict(image):
37
  # Get the label name
38
  predicted_label = id2label[str(predicted_class_idx)]
39
 
40
- # Return the predicted label and confidence score as a formatted string
41
- return f"<h1 style='font-size: 2em; color: red;'>{predicted_label}<br>Confidence: {confidence_score:.2f}</h1>"
 
 
 
42
 
43
  with gr.Blocks() as demo:
44
  with gr.Row():
45
  img1 = gr.Image(value="maladie_du_dragon_jaune.jpg", elem_id="img1")
46
  img2 = gr.Image(value="mineuse_des_agrumes.jpg", elem_id="img2")
47
-
48
  with gr.Row():
49
- input_img = gr.Image(type="pil", label="Upload an image of a citrus leaf to classify its disease.")
50
- output = gr.Textbox(label="Disease Classification")
51
-
52
  btn = gr.Button("Classify")
53
-
54
  btn.click(fn=predict, inputs=input_img, outputs=output)
55
 
56
- css = """
57
- <style>
58
- #img1, #img2 {
59
- width: 200px;
60
- height: 200px;
61
- border: 1px solid black;
62
- border-radius: 10px;
63
- cursor: pointer;
64
- }
65
- #img1:hover, #img2:hover {
66
- border-color: blue;
67
- }
68
- </style>
69
- """
70
- js = """
71
- <script>
72
- document.getElementById("img1").addEventListener("dragstart", function(event) {
73
- event.dataTransfer.setData("text", event.target.src);
74
- });
75
- document.getElementById("img2").addEventListener("dragstart", function(event) {
76
- event.dataTransfer.setData("text", event.target.src);
77
- });
78
- document.getElementById("input_img").addEventListener("drop", function(event) {
79
- event.preventDefault();
80
- var data = event.dataTransfer.getData("text");
81
- document.getElementById("input_img").src = data;
82
- });
83
- </script>
84
- """
85
- demo.html(css)
86
- demo.html(js)
87
-
88
  demo.launch(share=True)
 
37
  # Get the label name
38
  predicted_label = id2label[str(predicted_class_idx)]
39
 
40
+ # Return the predicted label and confidence score
41
+ return f"{predicted_label}: {confidence_score:.2f}"
42
+
43
+
44
+ # Create the Gradio interface
45
 
46
  with gr.Blocks() as demo:
47
  with gr.Row():
48
  img1 = gr.Image(value="maladie_du_dragon_jaune.jpg", elem_id="img1")
49
  img2 = gr.Image(value="mineuse_des_agrumes.jpg", elem_id="img2")
50
+
51
  with gr.Row():
52
+ input_img = gr.Image(type="pil", label="Upload an image of a citrus leaf to classify its disease. The model is trained on the following diseases: Aleurocanthus spiniferus, Chancre citrique, Cochenille blanche, Dépérissement des agrumes, Feuille saine, Jaunissement des feuilles, Maladie de l'oïdium, Maladie du dragon jaune, Mineuse des agrumes, Trou de balle.")
53
+ output = gr.Textbox(label="Prediction")
 
54
  btn = gr.Button("Classify")
 
55
  btn.click(fn=predict, inputs=input_img, outputs=output)
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  demo.launch(share=True)