KhadijaAsehnoune12 commited on
Commit
e6de937
1 Parent(s): bffe186

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -32
app.py CHANGED
@@ -1,33 +1,11 @@
1
  import gradio as gr
2
- from PIL import Image
3
- import numpy as np
4
-
5
- def predict(image):
6
- try:
7
- # Ensure the input is a PIL Image
8
- if isinstance(image, np.ndarray):
9
- # Convert numpy array to PIL Image
10
- image = Image.fromarray(image)
11
-
12
- if not isinstance(image, Image.Image):
13
- return {"error": "Input is not a valid image"}
14
-
15
- # Perform your prediction here
16
- # Placeholder for actual prediction logic
17
- result = {"Disease": "Predicted Disease", "Confidence": 0.95}
18
- return result
19
-
20
- except Exception as e:
21
- return {"error": str(e)}
22
-
23
- interface = gr.Interface(
24
- fn=predict,
25
- inputs=gr.Image(type="numpy"), # Use 'numpy' type for better compatibility
26
- outputs=gr.Label(num_top_classes=3),
27
- examples=[["MoucheB.jpg"], ["verdissement.jpg"]],
28
- title="Orange Disease Detector",
29
- description="Detect diseases in orange leaves and fruits."
30
- )
31
-
32
- if __name__ == "__main__":
33
- interface.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ pipe = pipeline(task="image-classification",
5
+ # model that can do 22k-category classification
6
+ model="KhadijaAsehnoune12/orange-disease-detector")
7
+ gr.Interface.from_pipeline(pipe,
8
+ title="22k Image Classification",
9
+ description="Detect diseases in orange leaves and fruits.",
10
+ examples = ['MoucheB.jpg', 'verdissement.jpg',],
11
+ ).launch()