KhadijaAsehnoune12 commited on
Commit
05936bf
1 Parent(s): d460ae2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -11
app.py CHANGED
@@ -1,25 +1,32 @@
1
  import gradio as gr
 
 
2
 
3
  def predict(image):
4
  try:
5
- # Placeholder for your actual prediction logic
6
- # Ensure the image is processed correctly
7
- if isinstance(image, Image.Image):
8
- # Perform your prediction here and ensure it returns expected types
9
- result = {"Disease": "Predicted Disease", "Confidence": 0.95}
10
- return result
11
- else:
12
- return {"error": "Invalid image format"}
 
 
 
 
 
13
  except Exception as e:
14
  return {"error": str(e)}
15
 
16
  interface = gr.Interface(
17
  fn=predict,
18
- inputs=gr.Image(type="pil"),
19
  outputs=gr.Label(num_top_classes=3),
20
- examples=[["MoucheB.jpg"], ["verdissement.jpg"]],
21
  title="Orange Disease Detector",
22
- description="Detect diseases in orange leaves."
23
  )
24
 
25
  if __name__ == "__main__":
 
1
  import gradio as gr
2
+ from PIL import Image
3
+ import numpy as np
4
 
5
  def predict(image):
6
  try:
7
+ # Ensure the input is a PIL Image
8
+ if isinstance(image, np.ndarray):
9
+ # Convert numpy array to PIL Image
10
+ image = Image.fromarray(image)
11
+
12
+ if not isinstance(image, Image.Image):
13
+ return {"error": "Input is not a valid image"}
14
+
15
+ # Perform your prediction here
16
+ # Placeholder for actual prediction logic
17
+ result = {"Disease": "Predicted Disease", "Confidence": 0.95}
18
+ return result
19
+
20
  except Exception as e:
21
  return {"error": str(e)}
22
 
23
  interface = gr.Interface(
24
  fn=predict,
25
+ inputs=gr.Image(type="numpy"), # Use 'numpy' type for better compatibility
26
  outputs=gr.Label(num_top_classes=3),
27
+ examples=["MoucheB.jpg", "verdissement.jpg"],
28
  title="Orange Disease Detector",
29
+ description="Detect diseases in orange leaves and fruits."
30
  )
31
 
32
  if __name__ == "__main__":