deep_seek_ocr / app.py
KhacHuy's picture
Update app.py
0d4ebe0 verified
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import os
import tempfile
from PIL import Image, ImageDraw
import re
# --- 1. Load Model and Tokenizer (CPU only) ---
print("Loading model and tokenizer on CPU...")
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Load model directly to CPU without flash_attention_2 (GPU-only feature)
model = AutoModel.from_pretrained(
model_name,
trust_remote_code=True,
use_safetensors=True,
torch_dtype=torch.float32 # Use float32 for CPU
)
model = model.eval()
print("✅ Model loaded successfully on CPU.")
# --- Helper function to find pre-generated result images ---
def find_result_image(path):
for filename in os.listdir(path):
if "grounding" in filename or "result" in filename:
try:
image_path = os.path.join(path, filename)
return Image.open(image_path)
except Exception as e:
print(f"Error opening result image {filename}: {e}")
return None
# --- 2. Main Processing Function (CPU version) ---
def process_ocr_task(image, model_size, task_type, ref_text):
"""
Processes an image with DeepSeek-OCR for all supported tasks.
CPU-only version without GPU decorators.
"""
if image is None:
return "Please upload an image first.", None
print("🚀 Processing on CPU...")
with tempfile.TemporaryDirectory() as output_path:
# Build the prompt
if task_type == "📝 Free OCR":
prompt = "<image>\nFree OCR."
elif task_type == "📄 Convert to Markdown":
prompt = "<image>\n<|grounding|>Convert the document to markdown."
elif task_type == "📈 Parse Figure":
prompt = "<image>\nParse the figure."
elif task_type == "🔍 Locate Object by Reference":
if not ref_text or ref_text.strip() == "":
raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
else:
prompt = "<image>\nFree OCR."
temp_image_path = os.path.join(output_path, "temp_image.png")
image.save(temp_image_path)
# Configure model size
size_configs = {
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
}
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
print(f"🏃 Running inference with prompt: {prompt}")
# Run inference on CPU (model is already on CPU)
text_result = model.infer(
tokenizer,
prompt=prompt,
image_file=temp_image_path,
output_path=output_path,
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"],
save_results=True,
test_compress=True,
eval_mode=True,
)
print(f"====\n📄 Text Result: {text_result}\n====")
# Try to find and draw all bounding boxes
result_image_pil = None
# Pattern to find coordinates like [[280, 15, 696, 997]]
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
matches = list(pattern.finditer(text_result))
if matches:
print(f"✅ Found {len(matches)} bounding box(es). Drawing on the original image.")
# Create a copy of the original image to draw on
image_with_bboxes = image.copy()
draw = ImageDraw.Draw(image_with_bboxes)
w, h = image.size
for match in matches:
# Extract coordinates as integers
coords_norm = [int(c) for c in match.groups()]
x1_norm, y1_norm, x2_norm, y2_norm = coords_norm
# Scale normalized coordinates to actual image size
x1 = int(x1_norm / 1000 * w)
y1 = int(y1_norm / 1000 * h)
x2 = int(x2_norm / 1000 * w)
y2 = int(y2_norm / 1000 * h)
# Draw rectangle with red outline
draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
result_image_pil = image_with_bboxes
else:
print("⚠️ No bounding box coordinates found. Falling back to search for result image file.")
result_image_pil = find_result_image(output_path)
return text_result, result_image_pil
# --- 3. Build the Gradio Interface ---
with gr.Blocks(title="🐳DeepSeek-OCR (CPU)🐳", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🐳 DeepSeek-OCR (CPU Version) 🐳
**⚠️ Note: Running on CPU - processing will be slower than GPU version**
**💡 How to use:**
1. **Upload an image** using the upload box.
2. Select a **Resolution**. Start with `Tiny` or `Small` for faster CPU processing.
3. Choose a **Task Type**:
- **📝 Free OCR**: Extracts raw text from the image.
- **📄 Convert to Markdown**: Converts the document into Markdown.
- **📈 Parse Figure**: Extracts structured data from charts.
- **🔍 Locate Object by Reference**: Finds a specific object/text.
4. If this helpful, please give it a like! 🙏 ❤️
"""
)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="🖼️ Upload Image", sources=["upload", "clipboard"])
model_size = gr.Dropdown(
choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
value="Small", # Default to Small for faster CPU processing
label="⚙️ Resolution Size"
)
task_type = gr.Dropdown(
choices=["📝 Free OCR", "📄 Convert to Markdown", "📈 Parse Figure", "🔍 Locate Object by Reference"],
value="📄 Convert to Markdown",
label="🚀 Task Type"
)
ref_text_input = gr.Textbox(
label="📝 Reference Text (for Locate task)",
placeholder="e.g., the teacher, 20-10, a red car...",
visible=False
)
submit_btn = gr.Button("Process Image", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(label="📄 Text Result", lines=15, show_copy_button=True)
output_image = gr.Image(label="🖼️ Image Result (if any)", type="pil")
# UI Interaction Logic
def toggle_ref_text_visibility(task):
return gr.Textbox(visible=True) if task == "🔍 Locate Object by Reference" else gr.Textbox(visible=False)
task_type.change(fn=toggle_ref_text_visibility, inputs=task_type, outputs=ref_text_input)
submit_btn.click(
fn=process_ocr_task,
inputs=[image_input, model_size, task_type, ref_text_input],
outputs=[output_text, output_image]
)
# Examples
gr.Examples(
examples=[
["doc_markdown.png", "Small", "📄 Convert to Markdown", ""],
["chart.png", "Small", "📈 Parse Figure", ""],
["teacher.jpg", "Tiny", "🔍 Locate Object by Reference", "the teacher"],
["math_locate.jpg", "Tiny", "🔍 Locate Object by Reference", "20-10"],
["receipt.jpg", "Small", "📝 Free OCR", ""],
],
inputs=[image_input, model_size, task_type, ref_text_input],
outputs=[output_text, output_image],
fn=process_ocr_task,
cache_examples=False,
)
# --- 4. Launch the App ---
if __name__ == "__main__":
if not os.path.exists("examples"):
os.makedirs("examples")
demo.queue(max_size=5).launch(share=True) # Reduced queue size for CPU