FillMeBERT / app.py
Keyurjotaniya007's picture
Update app.py
8913017 verified
import gradio as gr
import pandas as pd
from transformers import pipeline
from transformers.pipelines.base import PipelineException
fill_mask = pipeline("fill-mask", model="Keyurjotaniya007/bert-large-cased-wikitext-mlm-3.0", device=-1)
def predict_mask(sentence: str, top_k: int):
mask = fill_mask.tokenizer.mask_token
sentence = sentence.replace("[MASK]", mask)
if mask not in sentence:
return pd.DataFrame(
[["Error: please include `[MASK]` in your sentence.", 0.0]],
columns=["Sequence", "Score"]
)
try:
preds = fill_mask(sentence, top_k=top_k)
except PipelineException as e:
return pd.DataFrame([[f"Error: {str(e)}", 0.0]],
columns=["Sequence", "Score"])
rows = [[p["sequence"], round(p["score"], 3)] for p in preds]
return pd.DataFrame(rows, columns=["Sequence", "Score"])
with gr.Blocks(title="Masked Language Modeling") as demo:
gr.Markdown(
"# Masked Language Modeling\n"
"Enter a sentence with one `[MASK]` token and see the top-K completions."
)
with gr.Row():
sentence = gr.Textbox(
lines=2,
placeholder="e.g. The Great Wall of [MASK] is visible from space.",
label="Input Sentence"
)
top_k = gr.Slider(
minimum=1, maximum=10, step=1, value=5,
label="K Predictions[Min=1 & Max=10]"
)
predict_btn = gr.Button("Evaluate [MASK] Words", variant="primary")
results_df = gr.Dataframe(
headers=["Sequence", "Score"],
datatype=["str", "number"],
wrap=True,
interactive=False,
label="Predictions"
)
predict_btn.click(
fn=predict_mask,
inputs=[sentence, top_k],
outputs=results_df
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")