Spaces:
Sleeping
Sleeping
import urllib.request | |
import fitz | |
import re | |
import numpy as np | |
import tensorflow_hub as hub | |
import openai | |
import gradio as gr | |
import os | |
from sklearn.neighbors import NearestNeighbors | |
import requests | |
from cachetools import cached, TTLCache | |
CACHE_TIME = 60 * 60 * 6 # 6小时 | |
# 全局的推荐器对象 | |
recommender = None | |
# 第二个功能的全局变量 | |
def get_recommendations_from_semantic_scholar(semantic_scholar_id: str): | |
try: | |
r = requests.post( | |
"https://api.semanticscholar.org/recommendations/v1/papers/", | |
json={ | |
"positivePaperIds": [semantic_scholar_id], | |
}, | |
params={"fields": "externalIds,title,year", "limit": 10}, | |
) | |
return r.json()["recommendedPapers"] | |
except KeyError as e: | |
raise gr.Error( | |
"获取推荐时出错,如果这是一篇新论文或尚未被Semantic Scholar索引,则可能尚未有推荐。" | |
) from e | |
def filter_recommendations(recommendations, max_paper_count=5): | |
arxiv_paper = [ | |
r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None | |
] | |
if len(arxiv_paper) > max_paper_count: | |
arxiv_paper = arxiv_paper[:max_paper_count] | |
return arxiv_paper | |
def get_paper_title_from_arxiv_id(arxiv_id): | |
try: | |
return requests.get(f"https://huggingface.co/api/papers/{arxiv_id}").json()[ | |
"title" | |
] | |
except Exception as e: | |
print(f"获取论文标题时出错 {arxiv_id}: {e}") | |
raise gr.Error(f"获取论文标题时出错 {arxiv_id}: {e}") from e | |
def format_recommendation_into_markdown(arxiv_id, recommendations): | |
comment = "以下论文由Semantic Scholar API推荐\n\n" | |
for r in recommendations: | |
hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}" | |
comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n" | |
return comment | |
def return_recommendations(url): | |
arxiv_id = parse_arxiv_id_from_paper_url(url) | |
recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}") | |
filtered_recommendations = filter_recommendations(recommendations) | |
return format_recommendation_into_markdown(arxiv_id, filtered_recommendations) | |
# Gradio界面 | |
title = 'PDF GPT Turbo' | |
description = """ PDF GPT Turbo允许您与PDF文件交流。它使用Google的Universal Sentence Encoder与Deep averaging network(DAN)来提供无幻觉的响应,通过提高OpenAI的嵌入质量。它在方括号([Page No.])中引用页码,显示信息的位置,增强了响应的可信度。""" | |
# 预定义的问题 | |
questions = [ | |
"研究调查了什么?", | |
"能否提供本文的摘要?", | |
"这项研究使用了什么方法?", | |
# 需要时添加更多的问题 | |
] | |
with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo: | |
gr.Markdown(f'<center><h3>{title}</h3></center>') | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Group(): | |
gr.Markdown(f'<p style="text-align:center">在这里获取您的Open AI API密钥 <a href="https://platform.openai.com/account/api-keys">here</a></p>') | |
with gr.Accordion("API Key"): | |
openAI_key = gr.Textbox(label='在此输入您的OpenAI API密钥') | |
url = gr.Textbox(label='在此输入PDF的URL (示例: https://arxiv.org/pdf/1706.03762.pdf )') | |
gr.Markdown("<center><h4>或<h4></center>") | |
file = gr.File(label='在此上传您的PDF/研究论文/书籍', file_types=['.pdf']) | |
question = gr.Textbox(label='在此输入您的问题') | |
gr.Examples( | |
[[q] for q in questions], | |
inputs=[question], | |
label="预定义问题:点击问题以自动填充输入框,然后按Enter键!", | |
) | |
model = gr.Radio([ | |
'gpt-3.5-turbo', | |
'gpt-3.5-turbo-16k', | |
'gpt-3.5-turbo-0613', | |
'gpt-3.5-turbo-16k-0613', | |
'text-davinci-003', | |
'gpt-4', | |
'gpt-4-32k' | |
], label='选择模型', default='gpt-3.5-turbo') | |
btn = gr.Button(value='提交') | |
btn.style(full_width=True) | |
with gr.Group(): | |
chatbot = gr.Chatbot(placeholder="聊天历史", label="聊天历史", lines=50, elem_id="chatbot") | |
# 将按钮的点击事件绑定到question_answer函数 | |
btn.click( | |
question_answer, | |
inputs=[chatbot, url, file, question, openAI_key, model], | |
outputs=[chatbot], | |
) | |
# 第二个标签 | |
gr.Tab("论文推荐", [ | |
gr.Textbox(label="输入Hugging Face Papers的URL", lines=1), | |
gr.Button("获取推荐", return_recommendations), | |
gr.Markdown(), | |
]) | |
demo.launch() | |