Spaces:
Runtime error
Runtime error
import pdb | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
import numpy as np | |
from model.transformer_encoder_droppath import build_transformer | |
from model.matcher import build_matcher | |
from model.position_encoding import build_position_encoding | |
from utils.span_utils import generalized_temporal_iou, span_cxw_to_xx | |
def init_weights(module): | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
def mask_logits(inputs, mask, mask_value=-1e30): | |
mask = mask.type(torch.float32) | |
return inputs + (1.0 - mask) * mask_value | |
def sim_matrix(a, b, eps=1e-8): | |
""" | |
added eps for numerical stability | |
""" | |
a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None] | |
a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n)) | |
b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n)) | |
sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1)) | |
return sim_mt | |
class WeightedPool(nn.Module): | |
def __init__(self, dim): | |
super(WeightedPool, self).__init__() | |
weight = torch.empty(dim, 1) | |
nn.init.xavier_uniform_(weight) | |
self.weight = nn.Parameter(weight, requires_grad=True) | |
def forward(self, x, mask): | |
alpha = torch.tensordot(x, self.weight, dims=1) # shape = (batch_size, seq_length, 1) | |
alpha = mask_logits(alpha, mask=mask.unsqueeze(2)) | |
alphas = nn.Softmax(dim=1)(alpha) | |
pooled_x = torch.matmul(x.transpose(1, 2), alphas) # (batch_size, dim, 1) | |
pooled_x = pooled_x.squeeze(2) | |
return pooled_x | |
class Model(nn.Module): | |
""" This is the UniVTG module that performs moment localization. """ | |
def __init__(self, transformer, position_embed, txt_position_embed, txt_dim, vid_dim, | |
input_dropout, aux_loss=False, | |
max_v_l=75, span_loss_type="l1", use_txt_pos=False, n_input_proj=2): | |
""" Initializes the model. | |
Parameters: | |
transformer: torch module of the transformer architecture. See transformer.py | |
position_embed: torch module of the position_embedding, See position_encoding.py | |
txt_position_embed: position_embedding for text | |
txt_dim: int, text query input dimension | |
vid_dim: int, video feature input dimension | |
max_v_l: int, maximum #clips in videos | |
span_loss_type: str, one of [l1, ce] | |
l1: (center-x, width) regression. | |
ce: (st_idx, ed_idx) classification. | |
# foreground_thd: float, intersection over prediction >= foreground_thd: labeled as foreground | |
# background_thd: float, intersection over prediction <= background_thd: labeled background | |
""" | |
super().__init__() | |
self.transformer = transformer | |
self.position_embed = position_embed | |
self.txt_position_embed = txt_position_embed | |
hidden_dim = transformer.d_model | |
self.span_loss_type = span_loss_type | |
self.max_v_l = max_v_l | |
span_pred_dim = 2 if span_loss_type == "l1" else max_v_l * 2 | |
self.token_type_embeddings = nn.Embedding(2, hidden_dim) | |
self.token_type_embeddings.apply(init_weights) | |
# Conv projector | |
self.span_embed = Conv(hidden_dim, hidden_dim, span_pred_dim, 3, kernel_size=3) | |
self.class_embed = Conv(hidden_dim, hidden_dim, 1, 3, kernel_size=3) # 0: background, 1: foreground | |
self.use_txt_pos = use_txt_pos | |
self.n_input_proj = n_input_proj | |
relu_args = [True] * 3 | |
relu_args[n_input_proj-1] = False | |
self.input_txt_proj = nn.Sequential(*[ | |
LinearLayer(txt_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]), | |
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]), | |
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2]) | |
][:n_input_proj]) | |
self.input_vid_proj = nn.Sequential(*[ | |
LinearLayer(vid_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[0]), | |
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[1]), | |
LinearLayer(hidden_dim, hidden_dim, layer_norm=True, dropout=input_dropout, relu=relu_args[2]) | |
][:n_input_proj]) | |
# MLP Projector | |
self.weightedpool = WeightedPool(hidden_dim) | |
def forward(self, src_txt, src_txt_mask, src_vid, src_vid_mask, src_cls=None, src_cls_mask=None): | |
bs = src_vid.shape[0] | |
src_vid = self.input_vid_proj(src_vid) | |
src_txt = self.input_txt_proj(src_txt) | |
if src_cls is not None: | |
src_cls = self.input_txt_proj(src_cls) | |
# type token. | |
src_vid = src_vid + self.token_type_embeddings(torch.full_like(src_vid_mask.long(), 1)) | |
src_txt = src_txt + self.token_type_embeddings(torch.zeros_like(src_txt_mask.long())) | |
if src_cls is not None: | |
src_cls = src_cls + self.token_type_embeddings(torch.zeros_like(src_cls_mask.long())) | |
src = torch.cat([src_vid, src_txt], dim=1) # (bsz, L_vid+L_txt, d) | |
mask = torch.cat([src_vid_mask, src_txt_mask], dim=1).bool() # (bsz, L_vid+L_txt) | |
pos_vid = self.position_embed(src_vid, src_vid_mask) # (bsz, L_vid, d) | |
pos_txt = self.txt_position_embed(src_txt) if self.use_txt_pos else torch.zeros_like(src_txt) # (bsz, L_txt, d) | |
pos = torch.cat([pos_vid, pos_txt], dim=1) | |
memory = self.transformer(src, ~mask, pos) | |
vid_mem = memory[:, :src_vid.shape[1], :] # (bsz, L_vid, d) | |
outputs_class = self.class_embed(vid_mem).sigmoid() # (#layers, batch_size, #queries, #classes) | |
outputs_coord = self.span_embed(vid_mem) # (#layers, bsz, #queries, 2 or max_v_l * 2) | |
if self.span_loss_type == "l1": | |
outputs_coord = outputs_coord.sigmoid() | |
idx_mask = torch.tensor((-1, 1)).unsqueeze(0).unsqueeze(0).cuda() | |
idx_mask = idx_mask.repeat(outputs_coord.shape[0], outputs_coord.shape[1], 1) | |
outputs_coord = outputs_coord * idx_mask | |
else: | |
raise NotImplementedError | |
out = {'pred_logits': outputs_class, 'pred_spans': outputs_coord, | |
'src_vid_mask': src_vid_mask} | |
vid_mem_proj = src_vid | |
# word-level -> sentence-level | |
txt_mem_proj = self.weightedpool(src_txt, src_txt_mask).unsqueeze(1) | |
sim = F.cosine_similarity(vid_mem_proj, txt_mem_proj, dim=-1) + (src_vid_mask + 1e-45).log() | |
out["vid_mem_proj"] = vid_mem_proj | |
out["txt_mem_proj"] = txt_mem_proj | |
if src_cls is not None: | |
cls_mem_proj = self.weightedpool(src_cls, src_cls_mask) | |
out["cls_mem_proj"] = cls_mem_proj | |
out["saliency_scores"] = sim | |
return out | |
class SetCriterion(nn.Module): | |
""" This class computes the loss for DETR. | |
The process happens in two steps: | |
1) we compute hungarian assignment between ground truth boxes and the outputs of the model | |
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) | |
""" | |
def __init__(self, matcher, weight_dict, eos_coef, losses, temperature, span_loss_type, max_v_l, | |
saliency_margin=1): | |
""" Create the criterion. | |
Parameters: | |
matcher: module able to compute a matching between targets and proposals | |
weight_dict: dict containing as key the names of the losses and as values their relative weight. | |
eos_coef: relative classification weight applied to the no-object category | |
losses: list of all the losses to be applied. See get_loss for list of available losses. | |
temperature: float, temperature for NCE loss | |
span_loss_type: str, [l1, ce] | |
max_v_l: int, | |
saliency_margin: float | |
""" | |
super().__init__() | |
self.matcher = matcher | |
self.weight_dict = weight_dict | |
self.losses = losses | |
self.temperature = temperature | |
self.span_loss_type = span_loss_type | |
self.max_v_l = max_v_l | |
self.saliency_margin = saliency_margin | |
self.temperature = 0.07 | |
# foreground and background classification | |
self.foreground_label = 0 | |
self.background_label = 1 | |
self.eos_coef = eos_coef | |
empty_weight = torch.ones(2) | |
empty_weight[-1] = self.eos_coef # lower weight for background (index 1, foreground index 0) | |
self.register_buffer('empty_weight', empty_weight) | |
def loss_spans(self, outputs, targets, indices): | |
assert 'pred_spans' in outputs | |
start_spans = targets['timestamp'] | |
pred_spans = outputs['pred_spans'] | |
src_spans = start_spans + pred_spans | |
gt_spans = targets['span_labels_nn'] | |
mask = targets['timestamp_mask'].bool() | |
mask_full = targets['timestamp_mask'].unsqueeze(2).repeat(1, 1, 2) | |
mask_valid = targets['timestamp_window'].bool() | |
mask_valid_full = targets['timestamp_window'].unsqueeze(2).repeat(1, 1, 2) | |
loss_span = F.smooth_l1_loss(src_spans, gt_spans, reduction='none') * mask_valid_full | |
loss_giou = 1 - torch.diag(generalized_temporal_iou(src_spans[mask_valid], gt_spans[mask_valid])) | |
losses = {} | |
losses['loss_b'] = loss_span.sum() / mask_valid.sum() | |
losses['loss_g'] = loss_giou.mean() | |
return losses | |
def loss_labels(self, outputs, targets, indices, log=True): | |
src_logits = outputs['pred_logits'].squeeze(-1) # (batch_size, #queries, #classes=2) | |
mask = targets['timestamp_mask'].bool() | |
mask_valid = targets['timestamp_window'].bool() | |
target_classes = torch.full(src_logits.shape[:2], 0, dtype=torch.int64, device=src_logits.device) # (batch_size, #queries) | |
target_classes[mask_valid] = 1 | |
# target_classes = targets['timestamp_window'] # soft cls. | |
target_classes.float() | |
# pdb.set_trace() | |
weights = torch.zeros_like(target_classes).float() | |
weights[mask] = self.empty_weight[1] | |
weights[mask_valid] = self.empty_weight[0] | |
# pdb.set_trace() | |
loss_ce = F.binary_cross_entropy(src_logits, target_classes.float(), weight=weights, reduction="none") * mask | |
return {"loss_f": loss_ce.sum() / mask.sum()} | |
# return {"loss_f": loss_ce.sum() / (1 + mask_valid.sum())} | |
def loss_saliency(self, outputs, targets, indices, log=True): | |
"""higher scores for positive clips""" | |
if "saliency_pos_labels" not in targets: | |
return {"loss_s_inter": 0., "loss_s_intra": 0.} | |
saliency_scores = targets["saliency_scores"] | |
if saliency_scores.sum() == 0: | |
return {"loss_s_inter": 0., "loss_s_intra": 0.} | |
# * inter-vid mode | |
vid_mem_proj = outputs["vid_mem_proj"] | |
pos_indices = targets["saliency_pos_labels"][:,0].long() # (N, #pairs) | |
batch_indices = torch.arange(len(vid_mem_proj)).to(vid_mem_proj.device) | |
vid_feats = vid_mem_proj[batch_indices, pos_indices] | |
txt_feats = outputs["txt_mem_proj"].squeeze(1) | |
sim = sim_matrix(vid_feats, txt_feats) | |
i_logsm = F.log_softmax(sim / self.temperature, dim=1) | |
j_logsm = F.log_softmax(sim.t() /self.temperature, dim=1) | |
# sum over positives | |
idiag = torch.diag(i_logsm) | |
jdiag = torch.diag(j_logsm) | |
loss_i = idiag.sum() / len(idiag) | |
loss_j = jdiag.sum() / len(jdiag) | |
loss_saliency_inter = - loss_i - loss_j | |
# * intra-vid mode | |
mask = targets['timestamp_mask'] | |
selected_scores = saliency_scores[batch_indices, pos_indices].unsqueeze(-1) | |
neg_indices_in = (saliency_scores < selected_scores) | |
neg_indices_in[batch_indices, pos_indices] = True | |
mask_invalid = neg_indices_in * mask.bool() | |
sim_in = F.cosine_similarity(vid_mem_proj, txt_feats.unsqueeze(1), dim=-1) | |
sim_in = sim_in + (mask_invalid + 1e-45).log() | |
logsm_in_i = F.log_softmax(sim_in / self.temperature, dim=1) | |
logsm_in_j = F.log_softmax(sim_in.t() / self.temperature, dim=1) | |
pos_logsm_in_i = logsm_in_i[batch_indices, pos_indices] | |
pos_logsm_in_j = logsm_in_j[pos_indices, batch_indices] | |
loss_in_i = pos_logsm_in_i.sum() / len(pos_logsm_in_i) | |
loss_in_j = pos_logsm_in_j.sum() / len(pos_logsm_in_j) | |
loss_saliency_intra = - loss_in_i - loss_in_j | |
return {"loss_s_inter": loss_saliency_inter, "loss_s_intra": loss_saliency_intra} | |
def loss_saliency_cls(self, outputs, targets, indices, log=True): | |
"""higher scores for positive clips""" | |
if "saliency_pos_labels" not in targets: | |
return {"loss_s_inter": 0., "loss_s_intra": 0.} | |
saliency_scores = targets["saliency_scores"] | |
if saliency_scores.sum() == 0: | |
return {"loss_s_inter": 0., "loss_s_intra": 0.} | |
# * inter-vid mode | |
vid_mem_proj = outputs["vid_mem_proj"] | |
pos_indices = targets["saliency_pos_labels"][:,0].long() # (N, #pairs) | |
batch_indices = torch.arange(len(vid_mem_proj)).to(vid_mem_proj.device) | |
vid_feats = vid_mem_proj[batch_indices, pos_indices] | |
txt_feats = outputs["txt_mem_proj"].squeeze(1) | |
sim = sim_matrix(vid_feats, txt_feats) | |
i_logsm = F.log_softmax(sim / self.temperature, dim=1) | |
j_logsm = F.log_softmax(sim.t() /self.temperature, dim=1) | |
# sum over positives | |
idiag = torch.diag(i_logsm) | |
jdiag = torch.diag(j_logsm) | |
loss_i = idiag.sum() / len(idiag) | |
loss_j = jdiag.sum() / len(jdiag) | |
loss_saliency_inter = - loss_i - loss_j | |
# * intra-vid mode | |
if 'cls_idx' not in targets.keys(): # eval | |
return {"loss_s_inter": loss_saliency_inter} | |
cls_indices = targets['cls_idx'].bool() | |
cls_feats = outputs["cls_mem_proj"].squeeze(1) | |
sim_cls = sim_matrix(vid_feats, cls_feats) | |
i_logsm_cls = F.log_softmax(sim_cls / self.temperature, dim=1) | |
idiag_cls = i_logsm_cls[cls_indices] | |
loss_cls_i = idiag_cls.sum() / len(idiag_cls) | |
loss_saliency_intra = - loss_cls_i | |
return {"loss_s_inter": loss_saliency_inter, "loss_s_intra": loss_saliency_intra} | |
def get_loss(self, loss, outputs, targets, indices, **kwargs): | |
loss_map = { | |
"spans": self.loss_spans, | |
"labels": self.loss_labels, | |
"saliency": self.loss_saliency, | |
"saliency_cls": self.loss_saliency_cls, | |
} | |
assert loss in loss_map, f'do you really want to compute {loss} loss?' | |
return loss_map[loss](outputs, targets, indices, **kwargs) | |
def forward(self, outputs, targets, hl_only=False): | |
""" This performs the loss computation. | |
Parameters: | |
outputs: dict of tensors, see the output specification of the model for the format | |
targets: list of dicts, such that len(targets) == batch_size. | |
The expected keys in each dict depends on the losses applied, see each loss' doc | |
""" | |
indices = None | |
# Compute all the requested losses | |
losses = {} | |
for loss in self.losses: | |
losses.update(self.get_loss(loss, outputs, targets, indices)) | |
return losses | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
class Conv(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, kernel_size): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
# self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
self.layers = nn.ModuleList( | |
nn.Conv1d(n, k, kernel_size=kernel_size, stride=1, padding=kernel_size//2, dilation=1, groups=1, bias=True, padding_mode='zeros') | |
for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
x = x.permute(0,2,1) | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x.permute(0, 2, 1) | |
class LinearLayer(nn.Module): | |
"""linear layer configurable with layer normalization, dropout, ReLU.""" | |
def __init__(self, in_hsz, out_hsz, layer_norm=True, dropout=0.1, relu=True): | |
super(LinearLayer, self).__init__() | |
self.relu = relu | |
self.layer_norm = layer_norm | |
if layer_norm: | |
self.LayerNorm = nn.LayerNorm(in_hsz) | |
layers = [ | |
nn.Dropout(dropout), | |
nn.Linear(in_hsz, out_hsz) | |
] | |
self.net = nn.Sequential(*layers) | |
def forward(self, x): | |
"""(N, L, D)""" | |
if self.layer_norm: | |
x = self.LayerNorm(x) | |
x = self.net(x) | |
if self.relu: | |
x = F.relu(x, inplace=True) | |
return x # (N, L, D) | |
def build_model(args): | |
device = torch.device(args.device) | |
transformer = build_transformer(args) | |
position_embedding, txt_position_embedding = build_position_encoding(args) | |
model = Model( | |
transformer, | |
position_embedding, | |
txt_position_embedding, | |
txt_dim=args.t_feat_dim, | |
vid_dim=args.v_feat_dim, | |
input_dropout=args.input_dropout, | |
span_loss_type=args.span_loss_type, | |
use_txt_pos=args.use_txt_pos, | |
n_input_proj=args.n_input_proj, | |
) | |
matcher = build_matcher(args) | |
weight_dict = {"loss_b": args.b_loss_coef, | |
"loss_g": args.g_loss_coef, | |
"loss_f": args.f_loss_coef, | |
"loss_s_intra": args.s_loss_intra_coef, | |
"loss_s_inter": args.s_loss_inter_coef} | |
if args.dset_type in ['mr', 'vlp']: | |
if 'tal' not in args.train_path: | |
losses = ['spans', 'labels', 'saliency'] | |
else: | |
losses = ['spans', 'labels', 'saliency_cls'] | |
elif args.dset_type in ['hl', 'vs']: | |
losses = ['labels', 'saliency'] | |
criterion = SetCriterion( | |
matcher=matcher, | |
weight_dict=weight_dict, losses=losses, | |
eos_coef=args.eos_coef, temperature=args.temperature, | |
span_loss_type=args.span_loss_type, max_v_l=args.max_v_l, | |
saliency_margin=args.saliency_margin, | |
) | |
criterion.to(device) | |
return model, criterion | |