Spaces:
Runtime error
Runtime error
fine_tuning_dir = "/fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400" | |
""" | |
TODO: | |
+ [ ] Data load | |
+ [ ] Train / Test / Dev spilt | |
+ [ ] Train / Test Phase | |
+ [ ] Logging with Train / Dev / Test Loss | |
+ [ ] Evalutation metrics | |
""" | |
import pdb | |
import string | |
from pathlib import Path | |
import evaluate | |
import librosa | |
import torch | |
import torch.nn as nn | |
from datasets import Dataset, concatenate_datasets, load_dataset | |
from transformers import AutoProcessor | |
wer = evaluate.load("wer") | |
torch.cuda.set_device("cuda:0") | |
audio_dir = "./data/Patient_sil_trim_16k_normed_5_snr_40" | |
healthy_dir = "./data/Healthy" | |
Fary_PAL_30 = "./data/Fary_PAL_p326_20230110_30" | |
John_p326 = "./data/John_p326/output" | |
John_video = "./data/20230103_video" | |
## train | |
p326_300_dir = "./data/John_p326_large" | |
P1tony_arthur = "data/Participant1_Tony_Recording/CLEAN_SENTENCES/SCRIPTED/Arthur_the_Rat/PAL" | |
P1tony_rainbow = "data/Participant1_Tony_Recording/CLEAN_SENTENCES/SCRIPTED/Rainbow_Passage/Laronix" | |
P1tony = "data/Participant1_Tony_Recording/CLEAN_SENTENCES/CONVERSATIONAL/PAL" | |
P4Negel = 'data/4_negal_152_clean_all' | |
def dataclean(example): | |
if example["audio"]["sampling_rate"] != 16000: | |
resampled_audio = librosa.resample( | |
y=example["audio"]["array"], | |
orig_sr=example["audio"]["sampling_rate"], | |
target_sr=16000, | |
) | |
return { | |
"audio": { | |
"path": example["audio"]["path"], | |
"array": resampled_audio, | |
"sampling_rate": 16000, | |
}, | |
"transcription": example["transcription"] | |
.upper() | |
.translate(str.maketrans("", "", string.punctuation)), | |
} | |
else: | |
return { | |
"transcription": example["transcription"] | |
.upper() | |
.translate(str.maketrans("", "", string.punctuation)) | |
} | |
P1tony_dataset = load_dataset("audiofolder", data_dir=P1tony, split="train") | |
P1tony_dataset = P1tony_dataset.map(dataclean) | |
P1tony_scripted1 = load_dataset( | |
"audiofolder", data_dir=P1tony_rainbow, split="train" | |
) | |
P1tony_scripted2 = load_dataset( | |
"audiofolder", data_dir=P1tony_arthur, split="train" | |
) | |
P1tony_scripted1 = P1tony_scripted1.map(dataclean) | |
P1tony_scripted2 = P1tony_scripted2.map(dataclean) | |
P1tony_scripted = concatenate_datasets([P1tony_scripted1, P1tony_scripted2]) | |
class ChangeSampleRate(nn.Module): | |
def __init__(self, input_rate: int, output_rate: int): | |
super().__init__() | |
self.output_rate = output_rate | |
self.input_rate = input_rate | |
def forward(self, wav: torch.tensor) -> torch.tensor: | |
# Only accepts 1-channel waveform input | |
wav = wav.view(wav.size(0), -1) | |
new_length = wav.size(-1) * self.output_rate // self.input_rate | |
indices = torch.arange(new_length) * ( | |
self.input_rate / self.output_rate | |
) | |
round_down = wav[:, indices.long()] | |
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)] | |
output = round_down * (1.0 - indices.fmod(1.0)).unsqueeze( | |
0 | |
) + round_up * indices.fmod(1.0).unsqueeze(0) | |
return output | |
# resample and clean text data | |
def dataclean(example): | |
# pdb.set_trace() | |
if example["audio"]["sampling_rate"] != 16000: | |
resampled_audio = librosa.resample( | |
y=example["audio"]["array"], | |
orig_sr=example["audio"]["sampling_rate"], | |
target_sr=16000, | |
) | |
return { | |
"audio": { | |
"path": example["audio"]["path"], | |
"array": resampled_audio, | |
"sampling_rate": 16000, | |
}, | |
"transcription": example["transcription"] | |
.upper() | |
.translate(str.maketrans("", "", string.punctuation)), | |
} | |
else: | |
return { | |
"transcription": example["transcription"] | |
.upper() | |
.translate(str.maketrans("", "", string.punctuation)) | |
} | |
# processor = AutoFeatureExtractor.from_pretrained( | |
# "facebook/wav2vec2-base-960h" | |
# ) | |
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") | |
def prepare_dataset(batch): | |
audio = batch["audio"] | |
batch = processor( | |
audio["array"], | |
sampling_rate=audio["sampling_rate"], | |
text=batch["transcription"], | |
) | |
batch["input_length"] = len(batch["input_values"][0]) | |
return batch | |
src_dataset = load_dataset("audiofolder", data_dir=audio_dir, split="train") | |
src_dataset = src_dataset.map(dataclean) | |
p326_300_dataset = load_dataset( | |
"audiofolder", data_dir=p326_300_dir, split="train" | |
) | |
p326_300_dataset = p326_300_dataset.map(dataclean) | |
P4Negel_dataset = load_dataset("audiofolder", data_dir=P4Negel, split="train") | |
P4Negel_dataset = P4Negel_dataset.map(dataclean) | |
healthy_test_dataset = load_dataset( | |
"audiofolder", data_dir=healthy_dir, split="train" | |
) | |
healthy_test_dataset = healthy_test_dataset.map(dataclean) | |
Fary_PAL_test_dataset = load_dataset( | |
"audiofolder", data_dir=Fary_PAL_30, split="train" | |
) | |
Fary_PAL_test_dataset = Fary_PAL_test_dataset.map(dataclean) | |
John_p326_test_dataset = load_dataset( | |
"audiofolder", data_dir=John_p326, split="train" | |
) | |
John_p326_test_dataset = John_p326_test_dataset.map(dataclean) | |
John_video_test_dataset = load_dataset( | |
"audiofolder", data_dir=John_video, split="train" | |
) | |
John_video_test_dataset = John_video_test_dataset.map(dataclean) | |
def train_dev_test_split( | |
dataset: Dataset, dev_rate=0.1, test_rate=0.1, seed=1 | |
): | |
""" | |
input: dataset | |
dev_rate, | |
test_rate | |
seed | |
------- | |
Output: | |
dataset_dict{"train", "dev", "test"} | |
""" | |
train_dev_test = dataset.train_test_split(test_size=test_rate, seed=seed) | |
test = train_dev_test["test"] | |
train_dev = train_dev_test["train"] | |
# pdb.set_trace() | |
if len(train_dev) <= int(len(dataset) * dev_rate): | |
train = Dataset.from_dict({"audio": [], "transcription": []}) | |
dev = train_dev | |
else: | |
train_dev = train_dev.train_test_split( | |
test_size=int(len(dataset) * dev_rate), seed=seed | |
) | |
train = train_dev["train"] | |
dev = train_dev["test"] | |
return train, dev, test | |
P1tony_train, P1tony_dev, P1tony_test = train_dev_test_split( | |
P1tony_dataset, dev_rate=0.5, test_rate=0.5, seed=1 | |
) | |
P1tony_train_ = concatenate_datasets([P1tony_train, P1tony_scripted]) | |
# train_dev / test | |
ds = src_dataset.train_test_split(test_size=0.1, seed=1) | |
# dataset_libri = load_dataset( | |
# "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" | |
# ) | |
train_dev = ds["train"] | |
# train / dev | |
train_dev = train_dev.train_test_split( | |
test_size=int(len(src_dataset) * 0.1), seed=1 | |
) | |
# Tony | |
Tony_train = P1tony_train_ | |
Tony_dev = P1tony_dev | |
Tony_test = P1tony_test | |
# John | |
John_train, John_dev, John_test = train_dev_test_split(p326_300_dataset, dev_rate=0.1, test_rate=0.1) | |
# Negel | |
Negel_train, Negel_dev, Negel_test = train_dev_test_split(P4Negel_dataset, dev_rate=0.1, test_rate=0.1) | |
# train/dev/test | |
train = train_dev["train"] | |
test = ds["test"] | |
dev = train_dev["test"] | |
# combined | |
combine_train = concatenate_datasets([train, Tony_train, John_train, Negel_train]) | |
conbine_dev = concatenate_datasets([dev, Tony_dev, John_dev, Negel_dev]) | |
conbine_test = concatenate_datasets([test, Tony_test, John_test, Negel_test]) | |
# encoded_train = combine_train.map(prepare_dataset, num_proc=4) | |
# encoded_dev = conbine_dev.map(prepare_dataset, num_proc=4) | |
# encoded_test = conbine_test.map(prepare_dataset, num_proc=4) | |
# # extra_test | |
# encoded_Fary = Fary_PAL_test_dataset.map(prepare_dataset, num_proc=4) | |
# encoded_healthy = healthy_test_dataset.map(prepare_dataset, num_proc=4) | |
# encoded_ori_test = test.map(prepare_dataset, num_proc=4) | |
# encoded_Tony_test = Tony_test.map(prepare_dataset, num_proc=4) | |
# encoded_John_test = John_test.map(prepare_dataset, num_proc=4) | |
# encoded_Negel_test = Negel_test.map(prepare_dataset, num_proc=4) | |
# encoded_train = train.map(prepare_dataset, num_proc=4) | |
# encoded_dev = dev.map(prepare_dataset, num_proc=4) | |
# p326_encoded_train = p326_300_dataset.map(prepare_dataset, num_proc=4) | |
# combine large p326 in to training set | |
# encoded_train = concatenate_datasets([encoded_train, p326_encoded_train]) | |
# encoded_John_p326 = John_p326_test_dataset.map(prepare_dataset, num_proc=4) | |
# encoded_John_video = John_video_test_dataset.map(prepare_dataset, num_proc=4) | |
# pdb.set_trace() | |
import numpy as np | |
WER = evaluate.load("wer") | |
## Whisper decoding | |
from transformers import (Seq2SeqTrainer, Seq2SeqTrainingArguments, | |
WhisperFeatureExtractor, | |
WhisperForConditionalGeneration, WhisperModel, | |
WhisperProcessor, WhisperTokenizer) | |
processor = WhisperProcessor.from_pretrained("openai/whisper-medium") | |
# model = WhisperForConditionalGeneration.from_pretrained( | |
# "./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400", | |
# use_auth_token=True, | |
# ).to("cuda:0") | |
model = WhisperForConditionalGeneration.from_pretrained( | |
"openai/whisper-medium", | |
).to("cuda:0") | |
tokenizer = WhisperTokenizer.from_pretrained( | |
"openai/whisper-medium", language="English", task="transcribe" | |
) | |
from pathlib import Path | |
id = Path(fine_tuning_dir).stem | |
pdb.set_trace() | |
tokenizer.push_to_hub("KevinGeng/%s" % id) | |
# import pdb | |
feature_extractor = WhisperFeatureExtractor.from_pretrained( | |
"openai/whisper-medium" | |
) | |
def whisper_prepare_dataset(batch): | |
# load and resample audio data from 48 to 16kHz | |
audio = batch["audio"] | |
# compute log-Mel input features from input audio array | |
batch["input_features"] = feature_extractor( | |
audio["array"], sampling_rate=audio["sampling_rate"] | |
).input_features[0] | |
# encode target text to label ids | |
batch["labels"] = tokenizer(batch["transcription"]).input_ids | |
return batch | |
torch.cuda.empty_cache() | |
def my_map_to_pred(batch): | |
# pdb.set_trace() | |
audio = batch["audio"] | |
input_features = processor( | |
audio["array"], | |
sampling_rate=audio["sampling_rate"], | |
return_tensors="pt", | |
).input_features | |
# batch["reference"] = whisper_processor.tokenizer._normalize(batch['text']) | |
batch["reference"] = processor.tokenizer._normalize(batch["transcription"]) | |
with torch.no_grad(): | |
# predicted_ids = whisper_model.generate(input_features.to("cuda"))[0] | |
predicted_ids = model.generate(input_features.to("cuda"))[0] | |
transcription = model.decode(predicted_ids) | |
batch["prediction"] = model.tokenizer._normalize(transcription) | |
return batch | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Union | |
import torch | |
class DataCollatorSpeechSeq2SeqWithPadding: | |
processor: Any | |
def __call__( | |
self, features: List[Dict[str, Union[List[int], torch.Tensor]]] | |
) -> Dict[str, torch.Tensor]: | |
# split inputs and labels since they have to be of different lengths and need different padding methods | |
# first treat the audio inputs by simply returning torch tensors | |
input_features = [ | |
{"input_features": feature["input_features"]} | |
for feature in features | |
] | |
batch = self.processor.feature_extractor.pad( | |
input_features, return_tensors="pt" | |
) | |
# get the tokenized label sequences | |
label_features = [ | |
{"input_ids": feature["labels"]} for feature in features | |
] | |
# pad the labels to max length | |
labels_batch = self.processor.tokenizer.pad( | |
label_features, return_tensors="pt" | |
) | |
# replace padding with -100 to ignore loss correctly | |
labels = labels_batch["input_ids"].masked_fill( | |
labels_batch.attention_mask.ne(1), -100 | |
) | |
# if bos token is appended in previous tokenization step, | |
# cut bos token here as it's append later anyways | |
if ( | |
(labels[:, 0] == self.processor.tokenizer.bos_token_id) | |
.all() | |
.cpu() | |
.item() | |
): | |
labels = labels[:, 1:] | |
batch["labels"] = labels | |
return batch | |
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) | |
def compute_metrics(pred): | |
pred_ids = pred.predictions | |
label_ids = pred.label_ids | |
# replace -100 with the pad_token_id | |
label_ids[label_ids == -100] = tokenizer.pad_token_id | |
# we do not want to group tokens when computing the metrics | |
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) | |
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) | |
wer = 100 * WER.compute(predictions=pred_str, references=label_str) | |
return {"wer": wer} | |
encoded_train = combine_train.map(whisper_prepare_dataset, num_proc=4) | |
encoded_dev = conbine_dev.map(whisper_prepare_dataset, num_proc=4) | |
encoded_test = conbine_test.map(whisper_prepare_dataset, num_proc=4) | |
# extra_test | |
encoded_ori_test = test.map(whisper_prepare_dataset, num_proc=4) | |
encoded_Tony_test = Tony_test.map(whisper_prepare_dataset, num_proc=4) | |
encoded_John_test = John_test.map(whisper_prepare_dataset, num_proc=4) | |
encoded_Negel_test = Negel_test.map(whisper_prepare_dataset, num_proc=4) | |
encoded_Fary = Fary_PAL_test_dataset.map(whisper_prepare_dataset, num_proc=4) | |
encoded_healthy = healthy_test_dataset.map(whisper_prepare_dataset, num_proc=4) | |
torch.cuda.empty_cache() | |
training_args = Seq2SeqTrainingArguments( | |
output_dir=fine_tuning_dir, # change to a repo name of your choice | |
per_device_train_batch_size=8, | |
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size | |
learning_rate=1e-5, | |
warmup_steps=50, | |
max_steps=1000, | |
gradient_checkpointing=True, | |
fp16=True, | |
evaluation_strategy="steps", | |
save_strategy="steps", | |
per_device_eval_batch_size=8, | |
predict_with_generate=True, | |
generation_max_length=512, | |
save_steps=20, | |
eval_steps=20, | |
logging_steps=10, | |
report_to=["tensorboard"], | |
load_best_model_at_end=True, | |
metric_for_best_model="wer", | |
greater_is_better=False, | |
save_total_limit=5, | |
push_to_hub=False, | |
) | |
from transformers import EarlyStoppingCallback, Trainer, TrainingArguments | |
trainer = Seq2SeqTrainer( | |
args=training_args, | |
model=model, | |
train_dataset=Negel_train, | |
eval_dataset=Negel_dev, | |
data_collator=data_collator, | |
compute_metrics=compute_metrics, | |
tokenizer=processor.feature_extractor, | |
callbacks=[EarlyStoppingCallback(early_stopping_patience=10)], | |
) | |
# callbacks=[EvalLoggingCallback()] | |
pdb.set_trace() | |
before_result_dict = { | |
"Ori_Test": trainer.evaluate(encoded_ori_test), | |
"Tony_Test": trainer.evaluate(encoded_Tony_test), | |
"John_Test": trainer.evaluate(encoded_John_test), | |
"Negel_Test": trainer.evaluate(encoded_Negel_test), | |
"Zeroshot_Fary_Test": trainer.evaluate(encoded_Fary), | |
"Healthy_Test": trainer.evaluate(encoded_healthy), | |
} | |
print(before_result_dict) | |
trainer.train() | |
pdb.set_trace() | |
result_dict = { | |
"Ori_Test": trainer.evaluate(encoded_ori_test), | |
"Tony_Test": trainer.evaluate(encoded_Tony_test), | |
"John_Test": trainer.evaluate(encoded_John_test), | |
"Negel_Test": trainer.evaluate(encoded_Negel_test), | |
"Zeroshot_Fary_Test": trainer.evaluate(encoded_Fary), | |
"Healthy_Test": trainer.evaluate(encoded_healthy), | |
} | |
pdb.set_trace() | |
# Evaluation | |
model.push_to_hub("KevinGeng/%s" % id) |