KevinGeng's picture
push to HF
a1fe393
raw
history blame
No virus
16.1 kB
fine_tuning_dir = "fine_tuned/SSD/model/Negel_79_AVA_script_conv_train_conv_dev/checkpoint-50"
from typing import Any, Dict, List, Union
from dataclasses import dataclass
from transformers import Seq2SeqTrainer
from transformers import WhisperProcessor, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor, Seq2SeqTrainingArguments, Seq2SeqTrainer, WhisperModel
import evaluate
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from random import sample
from sys import flags
import gradio as gr
import torchaudio
import torch.nn as nn
import jiwer
import numpy as np
from rich import print as rprint
from rich.progress import track
from transformers import pipeline
import argparse
import yaml
import torch
from pathlib import Path
from transformers import AutoTokenizer, AutoFeatureExtractor, AutoModelForCTC, AutoProcessor
from datasets import load_dataset, concatenate_datasets
from datasets import Dataset, Audio
import pdb
import string
import librosa
# local import
import sys
sys.path.append("src")
import lightning_module
torch.cuda.set_device("cuda:0")
audio_dir = "./data/Patient_sil_trim_16k_normed_5_snr_40"
healthy_dir = "./data/Healthy"
Fary_PAL_30 = "./data/Fary_PAL_p326_20230110_30"
John_p326 = "./data/John_p326/output"
John_video = "./data/20230103_video"
negel_79 = "./data/4_negel_79"
patient_T = "data/Patient_T/Patient_T"
patient_L = "data/Patient_L/Patient_L"
# Get Transcription, WER and PPM
"""
TODO:
[DONE]: Automatic generating Config
"""
sys.path.append("./src")
wer = evaluate.load("wer")
# root_path = Path(__file__).parents[1]
class ChangeSampleRate(nn.Module):
def __init__(self, input_rate: int, output_rate: int):
super().__init__()
self.output_rate = output_rate
self.input_rate = input_rate
def forward(self, wav: torch.tensor) -> torch.tensor:
# Only accepts 1-channel waveform input
wav = wav.view(wav.size(0), -1)
new_length = wav.size(-1) * self.output_rate // self.input_rate
indices = torch.arange(new_length) * (
self.input_rate / self.output_rate
)
round_down = wav[:, indices.long()]
round_up = wav[:, (indices.long() + 1).clamp(max=wav.size(-1) - 1)]
output = round_down * (1.0 - indices.fmod(1.0)).unsqueeze(
0
) + round_up * indices.fmod(1.0).unsqueeze(0)
return output
# resample and clean text data
def dataclean(example):
# pdb.set_trace()
if example['audio']['sampling_rate'] != 16000:
resampled_audio = librosa.resample(y=example['audio']['array'],
orig_sr=example['audio']['sampling_rate'],
target_sr=16000)
# torchaudio.transforms.Resample(example['audio']['sampling_rate'], 16000)
# resampled_audio = resampler(example['audio']['array'])
return {"audio": {"path": example['audio']['path'], "array": resampled_audio, "sampling_rate": 16000},
"transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))}
else:
return {"transcription": example["transcription"].upper().translate(str.maketrans('', '', string.punctuation))}
processor = AutoFeatureExtractor.from_pretrained(
"facebook/wav2vec2-base-960h"
)
def prepare_dataset(batch):
audio = batch["audio"]
batch = processor(
audio["array"], sampling_rate=audio["sampling_rate"], text=batch['transcription'])
batch["input_length"] = len(batch["input_values"][0])
return batch
negel_79_dataset = load_dataset("audiofolder", data_dir=negel_79, split="train")
negel_79_dataset = negel_79_dataset.map(dataclean)
def train_dev_test_split(dataset: Dataset, dev_rate=0.1, test_rate=0.1, seed=1):
"""
input: dataset
dev_rate,
test_rate
seed
-------
Output:
dataset_dict{"train", "dev", "test"}
"""
train_dev_test = dataset.train_test_split(test_size=test_rate, seed=seed)
test = train_dev_test["test"]
train_dev = train_dev_test['train']
# pdb.set_trace()
if len(train_dev) <= int(len(dataset)*dev_rate):
train = Dataset.from_dict({"audio": [], "transcription": []})
dev = train_dev
else:
train_dev = train_dev.train_test_split(test_size=int(len(dataset)*dev_rate), seed=seed)
train = train_dev['train']
dev = train_dev['test']
return train, dev, test
# pdb.set_trace()
# P1tony_train, P1tony_dev, P1tony_test = train_dev_test_split(P1tony_dataset, dev_rate=0.5, test_rate=0.5, seed=1)
# P1tony_train_ = concatenate_datasets([P1tony_train,P1tony_scripted])
# pdb.set_trace()
Negel_79_train, Negel_79_dev, Negel_79_test = train_dev_test_split(negel_79_dataset, dev_rate=0.1, test_rate=0.1, seed=1)
# src_dataset = load_dataset("audiofolder", data_dir=audio_dir, split="train")
# src_dataset = src_dataset.map(dataclean)
# healthy_test_dataset = load_dataset(
# "audiofolder", data_dir=healthy_dir, split='train')
# healthy_test_dataset = healthy_test_dataset.map(dataclean)
# Fary_PAL_test_dataset = load_dataset(
# "audiofolder", data_dir=Fary_PAL_30, split='train')
# Fary_PAL_test_dataset = Fary_PAL_test_dataset.map(dataclean)
# John_p326_test_dataset = load_dataset(
# "audiofolder", data_dir=John_p326, split='train')
# John_p326_test_dataset = John_p326_test_dataset.map(dataclean)
# John_video_test_dataset = load_dataset(
# "audiofolder", data_dir=John_video, split='train')
# John_video_test_dataset = John_video_test_dataset.map(dataclean)
# patient_T_test_dataset = load_dataset("audiofolder", data_dir=patient_T, split='train')
# patient_T_test_dataset = patient_T_test_dataset.map(dataclean)
# patient_L_test_dataset = load_dataset("audiofolder", data_dir=patient_L, split='train')
# patient_L_test_dataset = patient_L_test_dataset.map(dataclean)
# pdb.set_trace()
# train_dev / test
# ds = src_dataset.train_test_split(test_size=0.1, seed=1)
# dataset_libri = load_dataset(
# "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# train_dev = ds['train']
# # train / dev
# train_dev = train_dev.train_test_split(
# test_size=int(len(src_dataset)*0.1), seed=1)
# # train/dev/test
# train = train_dev['train']
# test = ds['test']
# dev = train_dev['test']
# # pdb.set_trace()
# encoded_train = train.map(prepare_dataset, num_proc=4)
# encoded_dev = dev.map(prepare_dataset, num_proc=4)
# encoded_test = test.map(prepare_dataset, num_proc=4)
# encoded_healthy = healthy_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_Fary = Fary_PAL_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_John_p326 = John_p326_test_dataset.map(prepare_dataset, num_proc=4)
# encoded_John_video = John_video_test_dataset.map(prepare_dataset, num_proc=4)
# pdb.set_trace()
WER = evaluate.load("wer")
# Whisper decoding
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
model = WhisperForConditionalGeneration.from_pretrained(
"openai/whisper-medium").to("cuda:0")
tokenizer = WhisperTokenizer.from_pretrained(
"openai/whisper-medium", language="English", task="transcribe")
# Need to push tokenizer to hugginface/model to activate online API
# tokenizer.push_to_hub("KevinGeng/whipser_medium_en_PAL300_step25")
# import pdb
# pdb.set_trace()
feature_extractor = WhisperFeatureExtractor.from_pretrained(
"openai/whisper-medium")
def whisper_prepare_dataset(batch):
# load and resample audio data from 48 to 16kHz
audio = batch["audio"]
# compute log-Mel input features from input audio array
batch["input_features"] = feature_extractor(
audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
# encode target text to label ids
batch["labels"] = tokenizer(batch["transcription"]).input_ids
return batch
torch.cuda.empty_cache()
training_args = Seq2SeqTrainingArguments(
# change to a repo name of your choice
output_dir="./whisper-medium-PAL128-25step",
per_device_train_batch_size=8,
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
learning_rate=1e-5,
warmup_steps=100,
max_steps=1000,
gradient_checkpointing=True,
fp16=True,
evaluation_strategy="steps",
per_device_eval_batch_size=8,
predict_with_generate=True,
generation_max_length=512,
save_steps=100,
eval_steps=25,
logging_steps=100,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=True,
)
def my_map_to_pred(batch):
# pdb.set_trace()
audio = batch["audio"]
input_features = processor(
audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
# batch["reference"] = whisper_processor.tokenizer._normalize(batch['text'])
batch["reference"] = processor.tokenizer._normalize(batch['transcription'])
with torch.no_grad():
# predicted_ids = whisper_model.generate(input_features.to("cuda"))[0]
predicted_ids = model.generate(input_features.to("cuda"))[0]
transcription = model.decode(predicted_ids)
batch["prediction"] = model.tokenizer._normalize(transcription)
return batch
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
processor: Any
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need different padding methods
# first treat the audio inputs by simply returning torch tensors
input_features = [{"input_features": feature["input_features"]}
for feature in features]
batch = self.processor.feature_extractor.pad(
input_features, return_tensors="pt")
# get the tokenized label sequences
label_features = [{"input_ids": feature["labels"]}
for feature in features]
# pad the labels to max length
labels_batch = self.processor.tokenizer.pad(
label_features, return_tensors="pt")
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(
labels_batch.attention_mask.ne(1), -100)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
def compute_metrics(pred):
pdb.set_trace()
pred_ids = pred.predictions
label_ids = pred.label_ids
# replace -100 with the pad_token_id
label_ids[label_ids == -100] = tokenizer.pad_token_id
# we do not want to group tokens when computing the metrics
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
wer = 100 * WER.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
encode_negel_79_train = Negel_79_train.map(whisper_prepare_dataset, num_proc=4)
encode_negel_79_dev = Negel_79_dev.map(whisper_prepare_dataset, num_proc=4)
encode_negel_79_test = Negel_79_test.map(whisper_prepare_dataset, num_proc=4)
pdb.set_trace()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
fine_tuned_model = WhisperForConditionalGeneration.from_pretrained(
fine_tuning_dir
).to("cuda")
# "fine_tuned/SSD/model/whipser_medium_TEP_patient_T"
# "./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400"
#"./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-200"
def fine_tuned_map_to_pred(batch):
# pdb.set_trace()
audio = batch["audio"]
input_features = processor(
audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
# batch["reference"] = whisper_processor.tokenizer._normalize(batch['text'])
batch["reference"] = processor.tokenizer._normalize(batch['transcription'])
with torch.no_grad():
# predicted_ids = whisper_model.generate(input_features.to("cuda"))[0]
predicted_ids = fine_tuned_model.generate(input_features.to("cuda"))[0]
transcription = tokenizer.decode(predicted_ids)
batch["prediction"] = tokenizer._normalize(transcription)
return batch
# output_dir="./fine_tuned/whipser_medium_en_PAL300_step25_step2_VCTK/checkpoint-400",
testing_args = Seq2SeqTrainingArguments(
# change to a repo name of your choice
output_dir="fine_tuned/SSD/model/whipser_medium_TEP_patient_TL_TL",
per_device_train_batch_size=8,
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
learning_rate=1e-5,
warmup_steps=100,
max_steps=1000,
gradient_checkpointing=True,
fp16=True,
evaluation_strategy="steps",
per_device_eval_batch_size=8,
predict_with_generate=True,
generation_max_length=512,
save_steps=100,
eval_steps=25,
logging_steps=100,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=False,
)
predict_trainer = Seq2SeqTrainer(
args=testing_args,
model=fine_tuned_model,
data_collator=data_collator,
compute_metrics=compute_metrics,
tokenizer=processor.feature_extractor,
)
# trainer.train()
# fine tuned
# z_result = encoded_test.map(fine_tuned_map_to_pred)
pdb.set_trace()
z_result= encode_negel_79_test.map(fine_tuned_map_to_pred)
# 0.4692737430167598
z = WER.compute(references=z_result['reference'], predictions=z_result['prediction'])
# pdb.set_trace()
# z_hel_result = encoded_healthy.map(fine_tuned_map_to_pred)
# z_hel = WER.compute(references=z_hel_result['reference'], predictions=z_hel_result['prediction'])
# # 0.1591610117211598
# # pdb.set_trace()
# # z_fary_result = encoded_Fary.map(fine_tuned_map_to_pred)
# # z_far = WER.compute(references=z_fary_result['reference'], predictions=z_fary_result['prediction'])
# # 0.1791044776119403
# z_patient_LT = encoded_patient_TL_test.map(fine_tuned_map_to_pred)
# z_patient_LT_result = WER.compute(references=z_patient_LT['reference'], predictions=z_patient_LT['prediction'])
# z_patient_L = encoded_patient_L_test.map(fine_tuned_map_to_pred)
# z_patient_L_result = WER.compute(references=z_patient_L['reference'], predictions=z_patient_L['prediction'])
# z_patient_T = encoded_patient_T_test.map(fine_tuned_map_to_pred)
# z_patient_T_result = WER.compute(references=z_patient_T['reference'], predictions=z_patient_T['prediction'])
# # z_john_p326_result = encoded_John_p326.map(fine_tuned_map_to_pred)
# # pdb.set_trace()
# # z_john_p326 = WER.compute(references=z_john_p326_result['reference'], predictions=z_john_p326_result['prediction'])
# # 0.4648241206030151
pdb.set_trace()
# # y_John_video= fine_tuned_trainer.predict(encoded_John_video)
# # metrics={'test_loss': 2.665189743041992, 'test_wer': 0.7222222222222222, 'test_runtime': 0.1633, 'test_samples_per_second': 48.979, 'test_steps_per_second': 6.122})
# pdb.set_trace()
# p326 training
# metrics={'test_loss': 0.4804028868675232, 'test_wer': 0.21787709497206703, 'test_runtime': 0.3594, 'test_samples_per_second': 44.517, 'test_steps_per_second': 5.565})
# hel metrics={'test_loss': 1.6363693475723267, 'test_wer': 0.17951881554595928, 'test_runtime': 3.8451, 'test_samples_per_second': 41.611, 'test_steps_per_second': 5.201})
# Fary: metrics={'t est_loss': 1.4633615016937256, 'test_wer': 0.5572139303482587, 'test_runtime': 0.6627, 'test_samples_per_second': 45.27, 'test_steps_per_second': 6.036})
# p326 large: metrics={'test_loss': 0.6568527817726135, 'test_wer': 0.2889447236180904, 'test_runtime': 0.7169, 'test_samples_per_second': 51.613, 'test_steps_per_second': 6.975})