Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os, gc, torch | |
from datetime import datetime | |
from huggingface_hub import hf_hub_download | |
from pynvml import * | |
nvmlInit() | |
gpu_h = nvmlDeviceGetHandleByIndex(0) | |
ctx_limit = 1024 | |
import whisper | |
model1 = whisper.load_model("small") | |
title1 = "RWKV-4-Raven-7B-v8-Eng-20230408-ctx4096" | |
os.environ["RWKV_JIT_ON"] = '1' | |
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) | |
os.system('pip install voicefixer --upgrade') | |
from voicefixer import VoiceFixer | |
voicefixer = VoiceFixer() | |
from TTS.api import TTS | |
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) | |
import torchaudio | |
from speechbrain.pretrained import SpectralMaskEnhancement | |
enhance_model = SpectralMaskEnhancement.from_hparams( | |
source="speechbrain/metricgan-plus-voicebank", | |
savedir="pretrained_models/metricgan-plus-voicebank", | |
run_opts={"device":"cuda"}, | |
) | |
from rwkv.model import RWKV | |
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title1}.pth") | |
model = RWKV(model=model_path, strategy='cuda fp16i8 *8 -> cuda fp16') | |
from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
pipeline = PIPELINE(model, "20B_tokenizer.json") | |
def generate_prompt(instruction, input=None): | |
if input: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
# Instruction: | |
{instruction} | |
# Input: | |
{input} | |
# Response: | |
""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
# Instruction: | |
{instruction} | |
# Response: | |
""" | |
def evaluate( | |
# instruction, | |
audio, | |
input=None, | |
token_count=200, | |
temperature=1.0, | |
top_p=0.7, | |
presencePenalty = 0.1, | |
countPenalty = 0.1, | |
): | |
# load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
# make log-Mel spectrogram and move to the same device as the model1 | |
mel = whisper.log_mel_spectrogram(audio).to(model1.device) | |
# detect the spoken language | |
_, probs = model1.detect_language(mel) | |
print(f"Detected language: {max(probs, key=probs.get)}") | |
# decode the audio | |
options = whisper.DecodingOptions() | |
result = whisper.decode(model1, mel, options) | |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), | |
alpha_frequency = countPenalty, | |
alpha_presence = presencePenalty, | |
token_ban = [], # ban the generation of some tokens | |
token_stop = [0]) # stop generation whenever you see any token here | |
instruction = result.text | |
input = input.strip() | |
ctx = generate_prompt(instruction, input) | |
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) | |
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') | |
all_tokens = [] | |
out_last = 0 | |
out_str = '' | |
occurrence = {} | |
state = None | |
for i in range(int(token_count)): | |
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) | |
for n in occurrence: | |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) | |
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) | |
if token in args.token_stop: | |
break | |
all_tokens += [token] | |
if token not in occurrence: | |
occurrence[token] = 1 | |
else: | |
occurrence[token] += 1 | |
tmp = pipeline.decode(all_tokens[out_last:]) | |
if '\ufffd' not in tmp: | |
out_str += tmp | |
yield out_str.strip() | |
out_last = i + 1 | |
gc.collect() | |
torch.cuda.empty_cache() | |
yield out_str.strip() | |
g = gr.Interface( | |
fn=evaluate, | |
inputs=[ | |
# gr.components.Textbox(lines=2, label="Instruction", value="Tell me about ravens."), | |
gr.Audio(source="microphone", label = "请开始对话吧!", type="filepath"), | |
gr.components.Textbox(lines=2, label="Input", placeholder="none"), | |
gr.components.Slider(minimum=10, maximum=200, step=10, value=150), # token_count | |
gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature | |
gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.5), # top_p | |
gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # presencePenalty | |
gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # countPenalty | |
], | |
outputs=[ | |
gr.inputs.Textbox( | |
lines=5, | |
label="Output", | |
) | |
], | |
title="🥳💬💕 - TalktoAI,随时随地,谈天说地!", | |
description="🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!", | |
article = "Powered by the RWKV Language Model" | |
) | |
g.queue(concurrency_count=1, max_size=10) | |
g.launch(show_error=True) |