Spaces:
Build error
Build error
from typing import Optional | |
from typing import Tuple | |
from typing import Union | |
import torch | |
from .nets_utils import make_pad_mask | |
class Stft(torch.nn.Module): | |
def __init__( | |
self, | |
n_fft: int = 512, | |
win_length: Union[int, None] = 512, | |
hop_length: int = 128, | |
center: bool = True, | |
pad_mode: str = "reflect", | |
normalized: bool = False, | |
onesided: bool = True, | |
kaldi_padding_mode=False, | |
): | |
super().__init__() | |
self.n_fft = n_fft | |
if win_length is None: | |
self.win_length = n_fft | |
else: | |
self.win_length = win_length | |
self.hop_length = hop_length | |
self.center = center | |
self.pad_mode = pad_mode | |
self.normalized = normalized | |
self.onesided = onesided | |
self.kaldi_padding_mode = kaldi_padding_mode | |
if self.kaldi_padding_mode: | |
self.win_length = 400 | |
def extra_repr(self): | |
return ( | |
f"n_fft={self.n_fft}, " | |
f"win_length={self.win_length}, " | |
f"hop_length={self.hop_length}, " | |
f"center={self.center}, " | |
f"pad_mode={self.pad_mode}, " | |
f"normalized={self.normalized}, " | |
f"onesided={self.onesided}" | |
) | |
def forward( | |
self, input: torch.Tensor, ilens: torch.Tensor = None | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: | |
"""STFT forward function. | |
Args: | |
input: (Batch, Nsamples) or (Batch, Nsample, Channels) | |
ilens: (Batch) | |
Returns: | |
output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2) | |
""" | |
bs = input.size(0) | |
if input.dim() == 3: | |
multi_channel = True | |
# input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample) | |
input = input.transpose(1, 2).reshape(-1, input.size(1)) | |
else: | |
multi_channel = False | |
# output: (Batch, Freq, Frames, 2=real_imag) | |
# or (Batch, Channel, Freq, Frames, 2=real_imag) | |
if not self.kaldi_padding_mode: | |
output = torch.stft( | |
input, | |
n_fft=self.n_fft, | |
win_length=self.win_length, | |
hop_length=self.hop_length, | |
center=self.center, | |
pad_mode=self.pad_mode, | |
normalized=self.normalized, | |
onesided=self.onesided, | |
return_complex=False | |
) | |
else: | |
# NOTE(sx): Use Kaldi-fasion padding, maybe wrong | |
num_pads = self.n_fft - self.win_length | |
input = torch.nn.functional.pad(input, (num_pads, 0)) | |
output = torch.stft( | |
input, | |
n_fft=self.n_fft, | |
win_length=self.win_length, | |
hop_length=self.hop_length, | |
center=False, | |
pad_mode=self.pad_mode, | |
normalized=self.normalized, | |
onesided=self.onesided, | |
return_complex=False | |
) | |
# output: (Batch, Freq, Frames, 2=real_imag) | |
# -> (Batch, Frames, Freq, 2=real_imag) | |
output = output.transpose(1, 2) | |
if multi_channel: | |
# output: (Batch * Channel, Frames, Freq, 2=real_imag) | |
# -> (Batch, Frame, Channel, Freq, 2=real_imag) | |
output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose( | |
1, 2 | |
) | |
if ilens is not None: | |
if self.center: | |
pad = self.win_length // 2 | |
ilens = ilens + 2 * pad | |
olens = torch.div(ilens - self.win_length, self.hop_length, rounding_mode='floor') + 1 | |
# olens = ilens - self.win_length // self.hop_length + 1 | |
output.masked_fill_(make_pad_mask(olens, output, 1), 0.0) | |
else: | |
olens = None | |
return output, olens | |