Spaces:
Build error
Build error
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from torch.nn import Conv1d, AvgPool1d, Conv2d | |
from torch.nn.utils import weight_norm, spectral_norm | |
from vocoder.fregan.utils import get_padding | |
from vocoder.fregan.stft_loss import stft | |
from vocoder.fregan.dwt import DWT_1D | |
LRELU_SLOPE = 0.1 | |
class SpecDiscriminator(nn.Module): | |
"""docstring for Discriminator.""" | |
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False): | |
super(SpecDiscriminator, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.fft_size = fft_size | |
self.shift_size = shift_size | |
self.win_length = win_length | |
self.window = getattr(torch, window)(win_length) | |
self.discriminators = nn.ModuleList([ | |
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))), | |
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))), | |
]) | |
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1)) | |
def forward(self, y): | |
fmap = [] | |
with torch.no_grad(): | |
y = y.squeeze(1) | |
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device())) | |
y = y.unsqueeze(1) | |
for i, d in enumerate(self.discriminators): | |
y = d(y) | |
y = F.leaky_relu(y, LRELU_SLOPE) | |
fmap.append(y) | |
y = self.out(y) | |
fmap.append(y) | |
return torch.flatten(y, 1, -1), fmap | |
class MultiResSpecDiscriminator(torch.nn.Module): | |
def __init__(self, | |
fft_sizes=[1024, 2048, 512], | |
hop_sizes=[120, 240, 50], | |
win_lengths=[600, 1200, 240], | |
window="hann_window"): | |
super(MultiResSpecDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window), | |
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window), | |
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window) | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.dwt1d = DWT_1D() | |
self.dwt_conv1 = norm_f(Conv1d(2, 1, 1)) | |
self.dwt_proj1 = norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))) | |
self.dwt_conv2 = norm_f(Conv1d(4, 1, 1)) | |
self.dwt_proj2 = norm_f(Conv2d(1, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))) | |
self.dwt_conv3 = norm_f(Conv1d(8, 1, 1)) | |
self.dwt_proj3 = norm_f(Conv2d(1, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))) | |
self.convs = nn.ModuleList([ | |
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), | |
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# DWT 1 | |
x_d1_high1, x_d1_low1 = self.dwt1d(x) | |
x_d1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1)) | |
# 1d to 2d | |
b, c, t = x_d1.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x_d1 = F.pad(x_d1, (0, n_pad), "reflect") | |
t = t + n_pad | |
x_d1 = x_d1.view(b, c, t // self.period, self.period) | |
x_d1 = self.dwt_proj1(x_d1) | |
# DWT 2 | |
x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1) | |
x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1) | |
x_d2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) | |
# 1d to 2d | |
b, c, t = x_d2.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x_d2 = F.pad(x_d2, (0, n_pad), "reflect") | |
t = t + n_pad | |
x_d2 = x_d2.view(b, c, t // self.period, self.period) | |
x_d2 = self.dwt_proj2(x_d2) | |
# DWT 3 | |
x_d3_high1, x_d3_low1 = self.dwt1d(x_d2_high1) | |
x_d3_high2, x_d3_low2 = self.dwt1d(x_d2_low1) | |
x_d3_high3, x_d3_low3 = self.dwt1d(x_d2_high2) | |
x_d3_high4, x_d3_low4 = self.dwt1d(x_d2_low2) | |
x_d3 = self.dwt_conv3( | |
torch.cat([x_d3_high1, x_d3_low1, x_d3_high2, x_d3_low2, x_d3_high3, x_d3_low3, x_d3_high4, x_d3_low4], | |
dim=1)) | |
# 1d to 2d | |
b, c, t = x_d3.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x_d3 = F.pad(x_d3, (0, n_pad), "reflect") | |
t = t + n_pad | |
x_d3 = x_d3.view(b, c, t // self.period, self.period) | |
x_d3 = self.dwt_proj3(x_d3) | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
i = 0 | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
if i == 0: | |
x = torch.cat([x, x_d1], dim=2) | |
elif i == 1: | |
x = torch.cat([x, x_d2], dim=2) | |
elif i == 2: | |
x = torch.cat([x, x_d3], dim=2) | |
else: | |
x = x | |
i = i + 1 | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class ResWiseMultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self): | |
super(ResWiseMultiPeriodDiscriminator, self).__init__() | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorP(2), | |
DiscriminatorP(3), | |
DiscriminatorP(5), | |
DiscriminatorP(7), | |
DiscriminatorP(11), | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.dwt1d = DWT_1D() | |
self.dwt_conv1 = norm_f(Conv1d(2, 128, 15, 1, padding=7)) | |
self.dwt_conv2 = norm_f(Conv1d(4, 128, 41, 2, padding=20)) | |
self.convs = nn.ModuleList([ | |
norm_f(Conv1d(1, 128, 15, 1, padding=7)), | |
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), | |
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)), | |
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
]) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
# DWT 1 | |
x_d1_high1, x_d1_low1 = self.dwt1d(x) | |
x_d1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1)) | |
# DWT 2 | |
x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1) | |
x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1) | |
x_d2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) | |
i = 0 | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, LRELU_SLOPE) | |
fmap.append(x) | |
if i == 0: | |
x = torch.cat([x, x_d1], dim=2) | |
if i == 1: | |
x = torch.cat([x, x_d2], dim=2) | |
i = i + 1 | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class ResWiseMultiScaleDiscriminator(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(ResWiseMultiScaleDiscriminator, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.dwt1d = DWT_1D() | |
self.dwt_conv1 = norm_f(Conv1d(2, 1, 1)) | |
self.dwt_conv2 = norm_f(Conv1d(4, 1, 1)) | |
self.discriminators = nn.ModuleList([ | |
DiscriminatorS(use_spectral_norm=True), | |
DiscriminatorS(), | |
DiscriminatorS(), | |
]) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
# DWT 1 | |
y_hi, y_lo = self.dwt1d(y) | |
y_1 = self.dwt_conv1(torch.cat([y_hi, y_lo], dim=1)) | |
x_d1_high1, x_d1_low1 = self.dwt1d(y_hat) | |
y_hat_1 = self.dwt_conv1(torch.cat([x_d1_high1, x_d1_low1], dim=1)) | |
# DWT 2 | |
x_d2_high1, x_d2_low1 = self.dwt1d(y_hi) | |
x_d2_high2, x_d2_low2 = self.dwt1d(y_lo) | |
y_2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) | |
x_d2_high1, x_d2_low1 = self.dwt1d(x_d1_high1) | |
x_d2_high2, x_d2_low2 = self.dwt1d(x_d1_low1) | |
y_hat_2 = self.dwt_conv2(torch.cat([x_d2_high1, x_d2_low1, x_d2_high2, x_d2_low2], dim=1)) | |
for i, d in enumerate(self.discriminators): | |
if i == 1: | |
y = y_1 | |
y_hat = y_hat_1 | |
if i == 2: | |
y = y_2 | |
y_hat = y_hat_2 | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |