Spaces:
Build error
Build error
import torch | |
import torch.utils.data | |
from scipy.io.wavfile import read | |
from librosa.filters import mel as librosa_mel_fn | |
MAX_WAV_VALUE = 32768.0 | |
def load_wav(full_path): | |
sampling_rate, data = read(full_path) | |
return data, sampling_rate | |
def _dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def _spectral_normalize_torch(magnitudes): | |
output = _dynamic_range_compression_torch(magnitudes) | |
return output | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram( | |
y, | |
n_fft, | |
num_mels, | |
sampling_rate, | |
hop_size, | |
win_size, | |
fmin, | |
fmax, | |
center=False, | |
output_energy=False, | |
): | |
if torch.min(y) < -1.: | |
print('min value is ', torch.min(y)) | |
if torch.max(y) > 1.: | |
print('max value is ', torch.max(y)) | |
global mel_basis, hann_window | |
if fmax not in mel_basis: | |
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) | |
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') | |
y = y.squeeze(1) | |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], | |
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) | |
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) | |
mel_spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) | |
mel_spec = _spectral_normalize_torch(mel_spec) | |
if output_energy: | |
energy = torch.norm(spec, dim=1) | |
return mel_spec, energy | |
else: | |
return mel_spec | |