Spaces:
Build error
Build error
import librosa | |
import numpy as np | |
from encoder import inference as encoder | |
from utils import logmmse | |
from synthesizer import audio | |
from pathlib import Path | |
from pypinyin import Style | |
from pypinyin.contrib.neutral_tone import NeutralToneWith5Mixin | |
from pypinyin.converter import DefaultConverter | |
from pypinyin.core import Pinyin | |
class PinyinConverter(NeutralToneWith5Mixin, DefaultConverter): | |
pass | |
pinyin = Pinyin(PinyinConverter()).pinyin | |
def _process_utterance(wav: np.ndarray, text: str, out_dir: Path, basename: str, | |
skip_existing: bool, hparams): | |
## FOR REFERENCE: | |
# For you not to lose your head if you ever wish to change things here or implement your own | |
# synthesizer. | |
# - Both the audios and the mel spectrograms are saved as numpy arrays | |
# - There is no processing done to the audios that will be saved to disk beyond volume | |
# normalization (in split_on_silences) | |
# - However, pre-emphasis is applied to the audios before computing the mel spectrogram. This | |
# is why we re-apply it on the audio on the side of the vocoder. | |
# - Librosa pads the waveform before computing the mel spectrogram. Here, the waveform is saved | |
# without extra padding. This means that you won't have an exact relation between the length | |
# of the wav and of the mel spectrogram. See the vocoder data loader. | |
# Skip existing utterances if needed | |
mel_fpath = out_dir.joinpath("mels", "mel-%s.npy" % basename) | |
wav_fpath = out_dir.joinpath("audio", "audio-%s.npy" % basename) | |
if skip_existing and mel_fpath.exists() and wav_fpath.exists(): | |
return None | |
# Trim silence | |
if hparams.trim_silence: | |
wav = encoder.preprocess_wav(wav, normalize=False, trim_silence=True) | |
# Skip utterances that are too short | |
if len(wav) < hparams.utterance_min_duration * hparams.sample_rate: | |
return None | |
# Compute the mel spectrogram | |
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32) | |
mel_frames = mel_spectrogram.shape[1] | |
# Skip utterances that are too long | |
if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length: | |
return None | |
# Write the spectrogram, embed and audio to disk | |
np.save(mel_fpath, mel_spectrogram.T, allow_pickle=False) | |
np.save(wav_fpath, wav, allow_pickle=False) | |
# Return a tuple describing this training example | |
return wav_fpath.name, mel_fpath.name, "embed-%s.npy" % basename, len(wav), mel_frames, text | |
def _split_on_silences(wav_fpath, words, hparams): | |
# Load the audio waveform | |
wav, _ = librosa.load(wav_fpath, sr= hparams.sample_rate) | |
wav = librosa.effects.trim(wav, top_db= 40, frame_length=2048, hop_length=512)[0] | |
if hparams.rescale: | |
wav = wav / np.abs(wav).max() * hparams.rescaling_max | |
# denoise, we may not need it here. | |
if len(wav) > hparams.sample_rate*(0.3+0.1): | |
noise_wav = np.concatenate([wav[:int(hparams.sample_rate*0.15)], | |
wav[-int(hparams.sample_rate*0.15):]]) | |
profile = logmmse.profile_noise(noise_wav, hparams.sample_rate) | |
wav = logmmse.denoise(wav, profile, eta=0) | |
resp = pinyin(words, style=Style.TONE3) | |
res = [v[0] for v in resp if v[0].strip()] | |
res = " ".join(res) | |
return wav, res | |
def preprocess_speaker_general(speaker_dir, out_dir: Path, skip_existing: bool, hparams, dict_info, no_alignments: bool): | |
metadata = [] | |
extensions = ["*.wav", "*.flac", "*.mp3"] | |
for extension in extensions: | |
wav_fpath_list = speaker_dir.glob(extension) | |
# Iterate over each wav | |
for wav_fpath in wav_fpath_list: | |
words = dict_info.get(wav_fpath.name.split(".")[0]) | |
words = dict_info.get(wav_fpath.name) if not words else words # try with wav | |
if not words: | |
print("no wordS") | |
continue | |
sub_basename = "%s_%02d" % (wav_fpath.name, 0) | |
wav, text = _split_on_silences(wav_fpath, words, hparams) | |
metadata.append(_process_utterance(wav, text, out_dir, sub_basename, | |
skip_existing, hparams)) | |
return [m for m in metadata if m is not None] | |