Kevin676's picture
Duplicate from lewiswu1209/MockingBird
4817bcc
raw
history blame
13.2 kB
import logging
import six
import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
from .e2e_asr_common import get_vgg2l_odim
from .nets_utils import make_pad_mask, to_device
class RNNP(torch.nn.Module):
"""RNN with projection layer module
:param int idim: dimension of inputs
:param int elayers: number of encoder layers
:param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional)
:param int hdim: number of projection units
:param np.ndarray subsample: list of subsampling numbers
:param float dropout: dropout rate
:param str typ: The RNN type
"""
def __init__(self, idim, elayers, cdim, hdim, subsample, dropout, typ="blstm"):
super(RNNP, self).__init__()
bidir = typ[0] == "b"
for i in six.moves.range(elayers):
if i == 0:
inputdim = idim
else:
inputdim = hdim
rnn = torch.nn.LSTM(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir,
batch_first=True) if "lstm" in typ \
else torch.nn.GRU(inputdim, cdim, dropout=dropout, num_layers=1, bidirectional=bidir, batch_first=True)
setattr(self, "%s%d" % ("birnn" if bidir else "rnn", i), rnn)
# bottleneck layer to merge
if bidir:
setattr(self, "bt%d" % i, torch.nn.Linear(2 * cdim, hdim))
else:
setattr(self, "bt%d" % i, torch.nn.Linear(cdim, hdim))
self.elayers = elayers
self.cdim = cdim
self.subsample = subsample
self.typ = typ
self.bidir = bidir
def forward(self, xs_pad, ilens, prev_state=None):
"""RNNP forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, idim)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor prev_state: batch of previous RNN states
:return: batch of hidden state sequences (B, Tmax, hdim)
:rtype: torch.Tensor
"""
logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
elayer_states = []
for layer in six.moves.range(self.elayers):
xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True, enforce_sorted=False)
rnn = getattr(self, ("birnn" if self.bidir else "rnn") + str(layer))
rnn.flatten_parameters()
if prev_state is not None and rnn.bidirectional:
prev_state = reset_backward_rnn_state(prev_state)
ys, states = rnn(xs_pack, hx=None if prev_state is None else prev_state[layer])
elayer_states.append(states)
# ys: utt list of frame x cdim x 2 (2: means bidirectional)
ys_pad, ilens = pad_packed_sequence(ys, batch_first=True)
sub = self.subsample[layer + 1]
if sub > 1:
ys_pad = ys_pad[:, ::sub]
ilens = [int(i + 1) // sub for i in ilens]
# (sum _utt frame_utt) x dim
projected = getattr(self, 'bt' + str(layer)
)(ys_pad.contiguous().view(-1, ys_pad.size(2)))
if layer == self.elayers - 1:
xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1)
else:
xs_pad = torch.tanh(projected.view(ys_pad.size(0), ys_pad.size(1), -1))
return xs_pad, ilens, elayer_states # x: utt list of frame x dim
class RNN(torch.nn.Module):
"""RNN module
:param int idim: dimension of inputs
:param int elayers: number of encoder layers
:param int cdim: number of rnn units (resulted in cdim * 2 if bidirectional)
:param int hdim: number of final projection units
:param float dropout: dropout rate
:param str typ: The RNN type
"""
def __init__(self, idim, elayers, cdim, hdim, dropout, typ="blstm"):
super(RNN, self).__init__()
bidir = typ[0] == "b"
self.nbrnn = torch.nn.LSTM(idim, cdim, elayers, batch_first=True,
dropout=dropout, bidirectional=bidir) if "lstm" in typ \
else torch.nn.GRU(idim, cdim, elayers, batch_first=True, dropout=dropout,
bidirectional=bidir)
if bidir:
self.l_last = torch.nn.Linear(cdim * 2, hdim)
else:
self.l_last = torch.nn.Linear(cdim, hdim)
self.typ = typ
def forward(self, xs_pad, ilens, prev_state=None):
"""RNN forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor prev_state: batch of previous RNN states
:return: batch of hidden state sequences (B, Tmax, eprojs)
:rtype: torch.Tensor
"""
logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
xs_pack = pack_padded_sequence(xs_pad, ilens, batch_first=True)
self.nbrnn.flatten_parameters()
if prev_state is not None and self.nbrnn.bidirectional:
# We assume that when previous state is passed, it means that we're streaming the input
# and therefore cannot propagate backward BRNN state (otherwise it goes in the wrong direction)
prev_state = reset_backward_rnn_state(prev_state)
ys, states = self.nbrnn(xs_pack, hx=prev_state)
# ys: utt list of frame x cdim x 2 (2: means bidirectional)
ys_pad, ilens = pad_packed_sequence(ys, batch_first=True)
# (sum _utt frame_utt) x dim
projected = torch.tanh(self.l_last(
ys_pad.contiguous().view(-1, ys_pad.size(2))))
xs_pad = projected.view(ys_pad.size(0), ys_pad.size(1), -1)
return xs_pad, ilens, states # x: utt list of frame x dim
def reset_backward_rnn_state(states):
"""Sets backward BRNN states to zeroes - useful in processing of sliding windows over the inputs"""
if isinstance(states, (list, tuple)):
for state in states:
state[1::2] = 0.
else:
states[1::2] = 0.
return states
class VGG2L(torch.nn.Module):
"""VGG-like module
:param int in_channel: number of input channels
"""
def __init__(self, in_channel=1, downsample=True):
super(VGG2L, self).__init__()
# CNN layer (VGG motivated)
self.conv1_1 = torch.nn.Conv2d(in_channel, 64, 3, stride=1, padding=1)
self.conv1_2 = torch.nn.Conv2d(64, 64, 3, stride=1, padding=1)
self.conv2_1 = torch.nn.Conv2d(64, 128, 3, stride=1, padding=1)
self.conv2_2 = torch.nn.Conv2d(128, 128, 3, stride=1, padding=1)
self.in_channel = in_channel
self.downsample = downsample
if downsample:
self.stride = 2
else:
self.stride = 1
def forward(self, xs_pad, ilens, **kwargs):
"""VGG2L forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:return: batch of padded hidden state sequences (B, Tmax // 4, 128 * D // 4) if downsample
:rtype: torch.Tensor
"""
logging.debug(self.__class__.__name__ + ' input lengths: ' + str(ilens))
# x: utt x frame x dim
# xs_pad = F.pad_sequence(xs_pad)
# x: utt x 1 (input channel num) x frame x dim
xs_pad = xs_pad.view(xs_pad.size(0), xs_pad.size(1), self.in_channel,
xs_pad.size(2) // self.in_channel).transpose(1, 2)
# NOTE: max_pool1d ?
xs_pad = F.relu(self.conv1_1(xs_pad))
xs_pad = F.relu(self.conv1_2(xs_pad))
if self.downsample:
xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True)
xs_pad = F.relu(self.conv2_1(xs_pad))
xs_pad = F.relu(self.conv2_2(xs_pad))
if self.downsample:
xs_pad = F.max_pool2d(xs_pad, 2, stride=self.stride, ceil_mode=True)
if torch.is_tensor(ilens):
ilens = ilens.cpu().numpy()
else:
ilens = np.array(ilens, dtype=np.float32)
if self.downsample:
ilens = np.array(np.ceil(ilens / 2), dtype=np.int64)
ilens = np.array(
np.ceil(np.array(ilens, dtype=np.float32) / 2), dtype=np.int64).tolist()
# x: utt_list of frame (remove zeropaded frames) x (input channel num x dim)
xs_pad = xs_pad.transpose(1, 2)
xs_pad = xs_pad.contiguous().view(
xs_pad.size(0), xs_pad.size(1), xs_pad.size(2) * xs_pad.size(3))
return xs_pad, ilens, None # no state in this layer
class Encoder(torch.nn.Module):
"""Encoder module
:param str etype: type of encoder network
:param int idim: number of dimensions of encoder network
:param int elayers: number of layers of encoder network
:param int eunits: number of lstm units of encoder network
:param int eprojs: number of projection units of encoder network
:param np.ndarray subsample: list of subsampling numbers
:param float dropout: dropout rate
:param int in_channel: number of input channels
"""
def __init__(self, etype, idim, elayers, eunits, eprojs, subsample, dropout, in_channel=1):
super(Encoder, self).__init__()
typ = etype.lstrip("vgg").rstrip("p")
if typ not in ['lstm', 'gru', 'blstm', 'bgru']:
logging.error("Error: need to specify an appropriate encoder architecture")
if etype.startswith("vgg"):
if etype[-1] == "p":
self.enc = torch.nn.ModuleList([VGG2L(in_channel),
RNNP(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits,
eprojs,
subsample, dropout, typ=typ)])
logging.info('Use CNN-VGG + ' + typ.upper() + 'P for encoder')
else:
self.enc = torch.nn.ModuleList([VGG2L(in_channel),
RNN(get_vgg2l_odim(idim, in_channel=in_channel), elayers, eunits,
eprojs,
dropout, typ=typ)])
logging.info('Use CNN-VGG + ' + typ.upper() + ' for encoder')
else:
if etype[-1] == "p":
self.enc = torch.nn.ModuleList(
[RNNP(idim, elayers, eunits, eprojs, subsample, dropout, typ=typ)])
logging.info(typ.upper() + ' with every-layer projection for encoder')
else:
self.enc = torch.nn.ModuleList([RNN(idim, elayers, eunits, eprojs, dropout, typ=typ)])
logging.info(typ.upper() + ' without projection for encoder')
def forward(self, xs_pad, ilens, prev_states=None):
"""Encoder forward
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D)
:param torch.Tensor ilens: batch of lengths of input sequences (B)
:param torch.Tensor prev_state: batch of previous encoder hidden states (?, ...)
:return: batch of hidden state sequences (B, Tmax, eprojs)
:rtype: torch.Tensor
"""
if prev_states is None:
prev_states = [None] * len(self.enc)
assert len(prev_states) == len(self.enc)
current_states = []
for module, prev_state in zip(self.enc, prev_states):
xs_pad, ilens, states = module(xs_pad, ilens, prev_state=prev_state)
current_states.append(states)
# make mask to remove bias value in padded part
mask = to_device(self, make_pad_mask(ilens).unsqueeze(-1))
return xs_pad.masked_fill(mask, 0.0), ilens, current_states
def encoder_for(args, idim, subsample):
"""Instantiates an encoder module given the program arguments
:param Namespace args: The arguments
:param int or List of integer idim: dimension of input, e.g. 83, or
List of dimensions of inputs, e.g. [83,83]
:param List or List of List subsample: subsample factors, e.g. [1,2,2,1,1], or
List of subsample factors of each encoder. e.g. [[1,2,2,1,1], [1,2,2,1,1]]
:rtype torch.nn.Module
:return: The encoder module
"""
num_encs = getattr(args, "num_encs", 1) # use getattr to keep compatibility
if num_encs == 1:
# compatible with single encoder asr mode
return Encoder(args.etype, idim, args.elayers, args.eunits, args.eprojs, subsample, args.dropout_rate)
elif num_encs >= 1:
enc_list = torch.nn.ModuleList()
for idx in range(num_encs):
enc = Encoder(args.etype[idx], idim[idx], args.elayers[idx], args.eunits[idx], args.eprojs, subsample[idx],
args.dropout_rate[idx])
enc_list.append(enc)
return enc_list
else:
raise ValueError("Number of encoders needs to be more than one. {}".format(num_encs))