Kevin676's picture
Duplicate from lewiswu1209/MockingBird
4817bcc
raw
history blame
3.61 kB
from pydantic import BaseModel, Field
import os
from pathlib import Path
from enum import Enum
from typing import Any
from synthesizer.hparams import hparams
from synthesizer.train import train as synt_train
# Constants
SYN_MODELS_DIRT = f"synthesizer{os.sep}saved_models"
ENC_MODELS_DIRT = f"encoder{os.sep}saved_models"
# EXT_MODELS_DIRT = f"ppg_extractor{os.sep}saved_models"
# CONV_MODELS_DIRT = f"ppg2mel{os.sep}saved_models"
# ENC_MODELS_DIRT = f"encoder{os.sep}saved_models"
# Pre-Load models
if os.path.isdir(SYN_MODELS_DIRT):
synthesizers = Enum('synthesizers', list((file.name, file) for file in Path(SYN_MODELS_DIRT).glob("**/*.pt")))
print("Loaded synthesizer models: " + str(len(synthesizers)))
else:
raise Exception(f"Model folder {SYN_MODELS_DIRT} doesn't exist.")
if os.path.isdir(ENC_MODELS_DIRT):
encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt")))
print("Loaded encoders models: " + str(len(encoders)))
else:
raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.")
class Model(str, Enum):
DEFAULT = "default"
class Input(BaseModel):
model: Model = Field(
Model.DEFAULT, title="模型类型",
)
# datasets_root: str = Field(
# ..., alias="预处理数据根目录", description="输入目录(相对/绝对),不适用于ppg2mel模型",
# format=True,
# example="..\\trainning_data\\"
# )
input_root: str = Field(
..., alias="输入目录", description="预处理数据根目录",
format=True,
example=f"..{os.sep}audiodata{os.sep}SV2TTS{os.sep}synthesizer"
)
run_id: str = Field(
"", alias="新模型名/运行ID", description="使用新ID进行重新训练,否则选择下面的模型进行继续训练",
)
synthesizer: synthesizers = Field(
..., alias="已有合成模型",
description="选择语音合成模型文件."
)
gpu: bool = Field(
True, alias="GPU训练", description="选择“是”,则使用GPU训练",
)
verbose: bool = Field(
True, alias="打印详情", description="选择“是”,输出更多详情",
)
encoder: encoders = Field(
..., alias="语音编码模型",
description="选择语音编码模型文件."
)
save_every: int = Field(
1000, alias="更新间隔", description="每隔n步则更新一次模型",
)
backup_every: int = Field(
10000, alias="保存间隔", description="每隔n步则保存一次模型",
)
log_every: int = Field(
500, alias="打印间隔", description="每隔n步则打印一次训练统计",
)
class AudioEntity(BaseModel):
content: bytes
mel: Any
class Output(BaseModel):
__root__: int
def render_output_ui(self, streamlit_app) -> None: # type: ignore
"""Custom output UI.
If this method is implmeneted, it will be used instead of the default Output UI renderer.
"""
streamlit_app.subheader(f"Training started with code: {self.__root__}")
def train(input: Input) -> Output:
"""Train(训练)"""
print(">>> Start training ...")
force_restart = len(input.run_id) > 0
if not force_restart:
input.run_id = Path(input.synthesizer.value).name.split('.')[0]
synt_train(
input.run_id,
input.input_root,
f"synthesizer{os.sep}saved_models",
input.save_every,
input.backup_every,
input.log_every,
force_restart,
hparams
)
return Output(__root__=0)