Spaces:
Build error
Build error
from pydantic import BaseModel, Field | |
import os | |
from pathlib import Path | |
from enum import Enum | |
from encoder import inference as encoder | |
import librosa | |
from scipy.io.wavfile import write | |
import re | |
import numpy as np | |
from mkgui.base.components.types import FileContent | |
from vocoder.hifigan import inference as gan_vocoder | |
from synthesizer.inference import Synthesizer | |
from typing import Any, Tuple | |
import matplotlib.pyplot as plt | |
# Constants | |
AUDIO_SAMPLES_DIR = f"samples{os.sep}" | |
SYN_MODELS_DIRT = f"synthesizer{os.sep}saved_models" | |
ENC_MODELS_DIRT = f"encoder{os.sep}saved_models" | |
VOC_MODELS_DIRT = f"vocoder{os.sep}saved_models" | |
TEMP_SOURCE_AUDIO = f"wavs{os.sep}temp_source.wav" | |
TEMP_RESULT_AUDIO = f"wavs{os.sep}temp_result.wav" | |
if not os.path.isdir("wavs"): | |
os.makedirs("wavs") | |
# Load local sample audio as options TODO: load dataset | |
if os.path.isdir(AUDIO_SAMPLES_DIR): | |
audio_input_selection = Enum('samples', list((file.name, file) for file in Path(AUDIO_SAMPLES_DIR).glob("*.wav"))) | |
# Pre-Load models | |
if os.path.isdir(SYN_MODELS_DIRT): | |
synthesizers = Enum('synthesizers', list((file.name, file) for file in Path(SYN_MODELS_DIRT).glob("**/*.pt"))) | |
print("Loaded synthesizer models: " + str(len(synthesizers))) | |
else: | |
raise Exception(f"Model folder {SYN_MODELS_DIRT} doesn't exist.") | |
if os.path.isdir(ENC_MODELS_DIRT): | |
encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt"))) | |
print("Loaded encoders models: " + str(len(encoders))) | |
else: | |
raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.") | |
if os.path.isdir(VOC_MODELS_DIRT): | |
vocoders = Enum('vocoders', list((file.name, file) for file in Path(VOC_MODELS_DIRT).glob("**/*gan*.pt"))) | |
print("Loaded vocoders models: " + str(len(synthesizers))) | |
else: | |
raise Exception(f"Model folder {VOC_MODELS_DIRT} doesn't exist.") | |
class Input(BaseModel): | |
message: str = Field( | |
..., example="欢迎使用工具箱, 现已支持中文输入!", alias="文本内容" | |
) | |
local_audio_file: audio_input_selection = Field( | |
..., alias="输入语音(本地wav)", | |
description="选择本地语音文件." | |
) | |
upload_audio_file: FileContent = Field(default=None, alias="或上传语音", | |
description="拖拽或点击上传.", mime_type="audio/wav") | |
encoder: encoders = Field( | |
..., alias="编码模型", | |
description="选择语音编码模型文件." | |
) | |
synthesizer: synthesizers = Field( | |
..., alias="合成模型", | |
description="选择语音合成模型文件." | |
) | |
vocoder: vocoders = Field( | |
..., alias="语音解码模型", | |
description="选择语音解码模型文件(目前只支持HifiGan类型)." | |
) | |
class AudioEntity(BaseModel): | |
content: bytes | |
mel: Any | |
class Output(BaseModel): | |
__root__: Tuple[AudioEntity, AudioEntity] | |
def render_output_ui(self, streamlit_app, input) -> None: # type: ignore | |
"""Custom output UI. | |
If this method is implmeneted, it will be used instead of the default Output UI renderer. | |
""" | |
src, result = self.__root__ | |
streamlit_app.subheader("Synthesized Audio") | |
streamlit_app.audio(result.content, format="audio/wav") | |
fig, ax = plt.subplots() | |
ax.imshow(src.mel, aspect="equal", interpolation="none") | |
ax.set_title("mel spectrogram(Source Audio)") | |
streamlit_app.pyplot(fig) | |
fig, ax = plt.subplots() | |
ax.imshow(result.mel, aspect="equal", interpolation="none") | |
ax.set_title("mel spectrogram(Result Audio)") | |
streamlit_app.pyplot(fig) | |
def synthesize(input: Input) -> Output: | |
"""synthesize(合成)""" | |
# load models | |
encoder.load_model(Path(input.encoder.value)) | |
current_synt = Synthesizer(Path(input.synthesizer.value)) | |
gan_vocoder.load_model(Path(input.vocoder.value)) | |
# load file | |
if input.upload_audio_file != None: | |
with open(TEMP_SOURCE_AUDIO, "w+b") as f: | |
f.write(input.upload_audio_file.as_bytes()) | |
f.seek(0) | |
wav, sample_rate = librosa.load(TEMP_SOURCE_AUDIO) | |
else: | |
wav, sample_rate = librosa.load(input.local_audio_file.value) | |
write(TEMP_SOURCE_AUDIO, sample_rate, wav) #Make sure we get the correct wav | |
source_spec = Synthesizer.make_spectrogram(wav) | |
# preprocess | |
encoder_wav = encoder.preprocess_wav(wav, sample_rate) | |
embed, _, _ = encoder.embed_utterance(encoder_wav, return_partials=True) | |
# Load input text | |
texts = filter(None, input.message.split("\n")) | |
punctuation = '!,。、,' # punctuate and split/clean text | |
processed_texts = [] | |
for text in texts: | |
for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'): | |
if processed_text: | |
processed_texts.append(processed_text.strip()) | |
texts = processed_texts | |
# synthesize and vocode | |
embeds = [embed] * len(texts) | |
specs = current_synt.synthesize_spectrograms(texts, embeds) | |
spec = np.concatenate(specs, axis=1) | |
sample_rate = Synthesizer.sample_rate | |
wav, sample_rate = gan_vocoder.infer_waveform(spec) | |
# write and output | |
write(TEMP_RESULT_AUDIO, sample_rate, wav) #Make sure we get the correct wav | |
with open(TEMP_SOURCE_AUDIO, "rb") as f: | |
source_file = f.read() | |
with open(TEMP_RESULT_AUDIO, "rb") as f: | |
result_file = f.read() | |
return Output(__root__=(AudioEntity(content=source_file, mel=source_spec), AudioEntity(content=result_file, mel=spec))) |