Kevin676's picture
Update app.py
6004618
raw
history blame
5.66 kB
from TTS.api import TTS
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
import whisper
model = whisper.load_model("small")
import os
os.system('pip install voicefixer --upgrade')
from voicefixer import VoiceFixer
voicefixer = VoiceFixer()
import gradio as gr
import openai
import torch
import torchaudio
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
run_opts={"device":"cuda"},
)
import re
import random
import string
import librosa
import numpy as np
from pathlib import Path
from scipy.io.wavfile import write
from encoder import inference as encoder
from vocoder.hifigan import inference as gan_vocoder
from synthesizer.inference import Synthesizer
mes1 = [
{"role": "system", "content": "You are a TOEFL examiner. Help me improve my oral Englsih and give me feedback."}
]
mes2 = [
{"role": "system", "content": "You are a mental health therapist. Your name is Tina."}
]
mes3 = [
{"role": "system", "content": "You are my personal assistant. Your name is Alice."}
]
res = []
class Mandarin:
def __init__(self):
self.encoder_path = "encoder/saved_models/pretrained.pt"
self.vocoder_path = "vocoder/saved_models/pretrained/g_hifigan.pt"
self.config_fpath = "vocoder/hifigan/config_16k_.json"
self.accent = "synthesizer/saved_models/普通话.pt"
synthesizers_cache = {}
if synthesizers_cache.get(self.accent) is None:
self.current_synt = Synthesizer(Path(self.accent))
synthesizers_cache[self.accent] = self.current_synt
else:
self.current_synt = synthesizers_cache[self.accent]
encoder.load_model(Path(self.encoder_path))
gan_vocoder.load_model(Path(self.vocoder_path), self.config_fpath)
def setVoice(self, timbre):
self.timbre = timbre
wav, sample_rate, = librosa.load(self.timbre)
encoder_wav = encoder.preprocess_wav(wav, sample_rate)
self.embed, _, _ = encoder.embed_utterance(encoder_wav, return_partials=True)
def say(self, text):
texts = filter(None, text.split("\n"))
punctuation = "!,。、?!,.?::" # punctuate and split/clean text
processed_texts = []
for text in texts:
for processed_text in re.sub(r'[{}]+'.format(punctuation), '\n', text).split('\n'):
if processed_text:
processed_texts.append(processed_text.strip())
texts = processed_texts
embeds = [self.embed] * len(texts)
specs = self.current_synt.synthesize_spectrograms(texts, embeds)
spec = np.concatenate(specs, axis=1)
wav, sample_rate = gan_vocoder.infer_waveform(spec)
return wav, sample_rate
def greet(apikey, upload, audio, choice1, voice=None):
openai.api_key = apikey
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
res.append(result.text)
if choice1 == "TOEFL":
messages = mes1
elif choice1 == "Therapist":
messages = mes2
elif choice1 == "Alice":
messages = mes3
# chatgpt
n = len(res)
content = res[n-1]
messages.append({"role": "user", "content": content})
completion = openai.ChatCompletion.create(
model = "gpt-3.5-turbo",
messages = messages
)
chat_response = completion.choices[0].message.content
messages.append({"role": "assistant", "content": chat_response})
if voice is None:
voice = Mandarin()
voice.setVoice(upload)
voice.say("加载成功")
wav, sample_rate = voice.say(chat_response)
output_file = "".join( random.sample(string.ascii_lowercase + string.digits, 11) ) + ".wav"
write(output_file, sample_rate, wav.astype(np.float32))
voicefixer.restore(input=output_file, # input wav file path
output="audio1.wav", # output wav file path
cuda=True, # whether to use gpu acceleration
mode = 0) # You can try out mode 0, 1, or 2 to find out the best result
noisy = enhance_model.load_audio(
"audio1.wav"
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000)
return [result.text, chat_response, "enhanced.wav", voice]
def main():
gr.Interface(
fn=greet,
inputs=[
gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"),
gr.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"),
gr.Audio(source="microphone", label = "和您的专属AI聊天吧!", type="filepath"),
gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"),
gr.State([]),
],
outputs=[
gr.Textbox(label="Speech to Text"), gr.Textbox(label="ChatGPT Output"), gr.Audio(label="Audio with Custom Voice"), gr.State([]),
],
).launch()
if __name__=="__main__":
main()