Spaces:
Runtime error
Runtime error
from TTS.api import TTS | |
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True) | |
import whisper | |
model = whisper.load_model("small") | |
import torch | |
import torchaudio | |
from speechbrain.pretrained import SpectralMaskEnhancement | |
from scipy.io import wavfile | |
import noisereduce as nr | |
import gradio as gr | |
import openai | |
mes1 = [ | |
{"role": "system", "content": "You are a TOEFL examiner. Help me improve my oral Englsih and give me feedback."} | |
] | |
mes2 = [ | |
{"role": "system", "content": "You are a mental health therapist. Your name is Tina."} | |
] | |
mes3 = [ | |
{"role": "system", "content": "You are my personal assistant. Your name is Alice."} | |
] | |
res = [] | |
def transcribe(apikey, upload, audio, choice1): | |
openai.api_key = apikey | |
# time.sleep(3) | |
# load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
# make log-Mel spectrogram and move to the same device as the model | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# detect the spoken language | |
_, probs = model.detect_language(mel) | |
print(f"Detected language: {max(probs, key=probs.get)}") | |
# decode the audio | |
options = whisper.DecodingOptions() | |
result = whisper.decode(model, mel, options) | |
res.append(result.text) | |
if choice1 == "TOEFL": | |
messages = mes1 | |
elif choice1 == "Therapist": | |
messages = mes2 | |
elif choice1 == "Alice": | |
messages = mes3 | |
# chatgpt | |
n = len(res) | |
content = res[n-1] | |
messages.append({"role": "user", "content": content}) | |
completion = openai.ChatCompletion.create( | |
model = "gpt-3.5-turbo", | |
messages = messages | |
) | |
chat_response = completion.choices[0].message.content | |
messages.append({"role": "assistant", "content": chat_response}) | |
tts.tts_to_file(chat_response, speaker_wav = upload, language="en", file_path="output.wav") | |
rate, data = wavfile.read("output.wav") | |
#reduced_noise = nr.reduce_noise(y=data, sr=rate, prop_decrease= 0.9, stationary=True) | |
reduced_noise = nr.reduce_noise(y = data, sr=rate, prop_decrease= 0.8, thresh_n_mult_nonstationary=2, stationary=False) | |
#reduced_noise = nr.reduce_noise(y = data, sr=rate, thresh_n_mult_nonstationary=2, stationary=False) | |
wavfile.write("audio1.wav", rate, reduced_noise) | |
enhance_model = SpectralMaskEnhancement.from_hparams( | |
source="speechbrain/metricgan-plus-voicebank", | |
savedir="pretrained_models/metricgan-plus-voicebank", | |
run_opts={"device":"cuda"}, | |
) | |
noisy = enhance_model.load_audio( | |
"audio1.wav" | |
).unsqueeze(0) | |
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.])) | |
torchaudio.save("enhanced.wav", enhanced.cpu(), 16000) | |
return [result.text, chat_response, "enhanced.wav"] | |
output_1 = gr.Textbox(label="Speech to Text") | |
output_2 = gr.Textbox(label="ChatGPT Output") | |
output_3 = gr.Audio(label="Audio with Custom Voice") | |
gr.Interface( | |
title = '🥳💬💕 - TalktoAI,随时随地,谈天说地!', | |
theme="huggingface", | |
description = "🤖 - 让有人文关怀的AI造福每一个人!AI向善,文明璀璨!TalktoAI - Enable the future!", | |
fn=transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, label = "请填写您的OpenAI-API-key"), | |
gr.inputs.Audio(source="upload", label = "请上传您喜欢的声音(wav文件)", type="filepath"), | |
gr.inputs.Audio(source="microphone", type="filepath"), | |
gr.Radio(["TOEFL", "Therapist", "Alice"], label="TOEFL Examiner, Therapist Tina, or Assistant Alice?"), | |
], | |
outputs=[ | |
output_1, output_2, output_3 | |
], | |
).launch() |