DiffMorpher / morph_attn.py
Kevin
Add app
6ee2eb6
raw
history blame
32.7 kB
import os
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
import torch
import torch.nn.functional as F
import tqdm
import numpy as np
import safetensors
from PIL import Image
from torchvision import transforms
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from lora_utils import train_lora, load_lora
from diffusers import StableDiffusionPipeline
from argparse import ArgumentParser
from alpha_scheduler import AlphaScheduler
parser = ArgumentParser()
parser.add_argument(
'--image_path_0', type=str, default='',
help='Path of the image to be processed (default: %(default)s)')
parser.add_argument(
'--prompt_0', type=str, default='',
help='Prompt of the image (default: %(default)s)')
parser.add_argument(
'--image_path_1', type=str, default='',
help='Path of the 2nd image to be processed, used in "morphing" mode (default: %(default)s)')
parser.add_argument(
'--prompt_1', type=str, default='',
help='Prompt of the 2nd image, used in "morphing" mode (default: %(default)s)')
parser.add_argument(
'--output_path', type=str, default='',
help='Path of the output image (default: %(default)s)'
)
parser.add_argument(
'--num_frames', type=int, default=50,
help='Number of frames to generate (default: %(default)s)'
)
parser.add_argument(
'--duration', type=int, default=50,
help='Duration of each frame (default: %(default)s)'
)
parser.add_argument(
'--use_lora', action='store_true',
help='Use LORA to generate images (default: False)'
)
parser.add_argument(
'--guidance_scale', type=float, default=1.,
help='CFG guidace (default: %(default)s)'
)
parser.add_argument(
'--attn_beta', type=float, default=None,
)
parser.add_argument(
'-reschedule', action='store_true',
)
parser.add_argument(
'--lamd', type=float, default=0.6,
)
parser.add_argument(
'--use_adain', action='store_true'
)
args = parser.parse_args()
# name = args.output_path.split('/')[-1]
# attn_beta = args.attn_beta
# num_frames = args.num_frames
# use_alpha_scheduler = args.reschedule
# attn_step = 50 * args.lamd
def calc_mean_std(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
if len(size) == 3:
feat_std = feat_var.sqrt().view(N, C, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1)
else:
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def get_img(img, resolution=512):
norm_mean = [0.5, 0.5, 0.5]
norm_std = [0.5, 0.5, 0.5]
transform = transforms.Compose([
transforms.Resize((resolution, resolution)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std)
])
img = transform(img)
return img.unsqueeze(0)
@torch.no_grad()
def slerp(p0, p1, fract_mixing: float, adain=True):
r""" Copied from lunarring/latentblending
Helper function to correctly mix two random variables using spherical interpolation.
The function will always cast up to float64 for sake of extra 4.
Args:
p0:
First tensor for interpolation
p1:
Second tensor for interpolation
fract_mixing: float
Mixing coefficient of interval [0, 1].
0 will return in p0
1 will return in p1
0.x will return a mix between both preserving angular velocity.
"""
if p0.dtype == torch.float16:
recast_to = 'fp16'
else:
recast_to = 'fp32'
p0 = p0.double()
p1 = p1.double()
if adain:
mean1, std1 = calc_mean_std(p0)
mean2, std2 = calc_mean_std(p1)
mean = mean1 * (1 - fract_mixing) + mean2 * fract_mixing
std = std1 * (1 - fract_mixing) + std2 * fract_mixing
norm = torch.linalg.norm(p0) * torch.linalg.norm(p1)
epsilon = 1e-7
dot = torch.sum(p0 * p1) / norm
dot = dot.clamp(-1+epsilon, 1-epsilon)
theta_0 = torch.arccos(dot)
sin_theta_0 = torch.sin(theta_0)
theta_t = theta_0 * fract_mixing
s0 = torch.sin(theta_0 - theta_t) / sin_theta_0
s1 = torch.sin(theta_t) / sin_theta_0
interp = p0*s0 + p1*s1
if adain:
interp = F.instance_norm(interp) * std + mean
if recast_to == 'fp16':
interp = interp.half()
elif recast_to == 'fp32':
interp = interp.float()
return interp
def do_replace_attn(key: str):
# return key.startswith('up_blocks.2') or key.startswith('up_blocks.3')
return key.startswith('up')
class StoreProcessor():
def __init__(self, original_processor, value_dict, name):
self.original_processor = original_processor
self.value_dict = value_dict
self.name = name
self.value_dict[self.name] = dict()
self.id = 0
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
# Is self attention
if encoder_hidden_states is None:
self.value_dict[self.name][self.id] = hidden_states.detach()
self.id += 1
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
return res
class LoadProcessor():
def __init__(self, original_processor, name, img0_dict, img1_dict, alpha, beta=0, lamb=0.6):
super().__init__()
self.original_processor = original_processor
self.name = name
self.img0_dict = img0_dict
self.img1_dict = img1_dict
self.alpha = alpha
self.beta = beta
self.lamb = lamb
self.id = 0
def parent_call(
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(
hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states) + scale * \
self.original_processor.to_q_lora(hidden_states)
query = attn.head_to_batch_dim(query)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(
encoder_hidden_states)
key = attn.to_k(encoder_hidden_states) + scale * \
self.original_processor.to_k_lora(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states) + scale * \
self.original_processor.to_v_lora(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(
query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](
hidden_states) + scale * self.original_processor.to_out_lora(hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(
-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
# Is self attention
if encoder_hidden_states is None:
# hardcode timestep
if self.id < 50 * self.lamb:
map0 = self.img0_dict[self.name][self.id]
map1 = self.img1_dict[self.name][self.id]
cross_map = self.beta * hidden_states + \
(1 - self.beta) * ((1 - self.alpha) * map0 + self.alpha * map1)
# cross_map = self.beta * hidden_states + \
# (1 - self.beta) * slerp(map0, map1, self.alpha)
# cross_map = slerp(slerp(map0, map1, self.alpha),
# hidden_states, self.beta)
# cross_map = hidden_states
# cross_map = torch.cat(
# ((1 - self.alpha) * map0, self.alpha * map1), dim=1)
# res = self.original_processor(attn, hidden_states, *args,
# encoder_hidden_states=cross_map,
# attention_mask=attention_mask,
# temb=temb, **kwargs)
res = self.parent_call(attn, hidden_states, *args,
encoder_hidden_states=cross_map,
attention_mask=attention_mask,
**kwargs)
else:
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
self.id += 1
# if self.id == len(self.img0_dict[self.name]):
if self.id == len(self.img0_dict[self.name]):
self.id = 0
else:
res = self.original_processor(attn, hidden_states, *args,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**kwargs)
return res
class DiffMorpherPipeline(StableDiffusionPipeline):
def __init__(self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
safety_checker, feature_extractor, requires_safety_checker)
self.img0_dict = dict()
self.img1_dict = dict()
def inv_step(
self,
model_output: torch.FloatTensor,
timestep: int,
x: torch.FloatTensor,
eta=0.,
verbose=False
):
"""
Inverse sampling for DDIM Inversion
"""
if verbose:
print("timestep: ", timestep)
next_step = timestep
timestep = min(timestep - self.scheduler.config.num_train_timesteps //
self.scheduler.num_inference_steps, 999)
alpha_prod_t = self.scheduler.alphas_cumprod[
timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step]
beta_prod_t = 1 - alpha_prod_t
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir
return x_next, pred_x0
@torch.no_grad()
def invert(
self,
image: torch.Tensor,
prompt,
num_inference_steps=50,
num_actual_inference_steps=None,
guidance_scale=1.,
eta=0.0,
**kwds):
"""
invert a real image into noise map with determinisc DDIM inversion
"""
DEVICE = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
batch_size = image.shape[0]
if isinstance(prompt, list):
if batch_size == 1:
image = image.expand(len(prompt), -1, -1, -1)
elif isinstance(prompt, str):
if batch_size > 1:
prompt = [prompt] * batch_size
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0]
print("input text embeddings :", text_embeddings.shape)
# define initial latents
latents = self.image2latent(image)
# unconditional embedding for classifier free guidance
if guidance_scale > 1.:
max_length = text_input.input_ids.shape[-1]
unconditional_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=77,
return_tensors="pt"
)
unconditional_embeddings = self.text_encoder(
unconditional_input.input_ids.to(DEVICE))[0]
text_embeddings = torch.cat(
[unconditional_embeddings, text_embeddings], dim=0)
print("latents shape: ", latents.shape)
# interative sampling
self.scheduler.set_timesteps(num_inference_steps)
print("Valid timesteps: ", reversed(self.scheduler.timesteps))
# print("attributes: ", self.scheduler.__dict__)
latents_list = [latents]
pred_x0_list = [latents]
for i, t in enumerate(tqdm.tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")):
if num_actual_inference_steps is not None and i >= num_actual_inference_steps:
continue
if guidance_scale > 1.:
model_inputs = torch.cat([latents] * 2)
else:
model_inputs = latents
# predict the noise
noise_pred = self.unet(
model_inputs, t, encoder_hidden_states=text_embeddings).sample
if guidance_scale > 1.:
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
noise_pred = noise_pred_uncon + guidance_scale * \
(noise_pred_con - noise_pred_uncon)
# compute the previous noise sample x_t-1 -> x_t
latents, pred_x0 = self.inv_step(noise_pred, t, latents)
latents_list.append(latents)
pred_x0_list.append(pred_x0)
return latents
@torch.no_grad()
def ddim_inversion(self, latent, cond):
timesteps = reversed(self.scheduler.timesteps)
with torch.autocast(device_type='cuda', dtype=torch.float32):
for i, t in enumerate(tqdm.tqdm(timesteps, desc="DDIM inversion")):
cond_batch = cond.repeat(latent.shape[0], 1, 1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(
latent, t, encoder_hidden_states=cond_batch).sample
pred_x0 = (latent - sigma_prev * eps) / mu_prev
latent = mu * pred_x0 + sigma * eps
# if save_latents:
# torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
# torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
return latent
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
x: torch.FloatTensor,
):
"""
predict the sample of the next step in the denoise process.
"""
prev_timestep = timestep - \
self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep > 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
pred_dir = (1 - alpha_prod_t_prev)**0.5 * model_output
x_prev = alpha_prod_t_prev**0.5 * pred_x0 + pred_dir
return x_prev, pred_x0
@torch.no_grad()
def image2latent(self, image):
DEVICE = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
if type(image) is Image:
image = np.array(image)
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0)
# input image density range [-1, 1]
latents = self.vae.encode(image.to(DEVICE))['latent_dist'].mean
latents = latents * 0.18215
return latents
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
image = self.vae.decode(latents)['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).astype(np.uint8)
elif return_type == "pt":
image = (image / 2 + 0.5).clamp(0, 1)
return image
def latent2image_grad(self, latents):
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents)['sample']
return image # range [-1, 1]
@torch.no_grad()
def cal_latent(self, num_inference_steps, guidance_scale, unconditioning, img_noise_0, img_noise_1, text_embeddings_0, text_embeddings_1, lora_0, lora_1, alpha, use_lora, fix_lora=None):
# latents = torch.cos(alpha * torch.pi / 2) * img_noise_0 + \
# torch.sin(alpha * torch.pi / 2) * img_noise_1
# latents = (1 - alpha) * img_noise_0 + alpha * img_noise_1
# latents = latents / ((1 - alpha) ** 2 + alpha ** 2)
latents = slerp(img_noise_0, img_noise_1, alpha, self.use_adain)
text_embeddings = (1 - alpha) * text_embeddings_0 + \
alpha * text_embeddings_1
self.scheduler.set_timesteps(num_inference_steps)
if use_lora:
if fix_lora is not None:
self.unet = load_lora(self.unet, lora_0, lora_1, fix_lora)
else:
self.unet = load_lora(self.unet, lora_0, lora_1, alpha)
for i, t in enumerate(tqdm.tqdm(self.scheduler.timesteps, desc=f"DDIM Sampler, alpha={alpha}")):
if guidance_scale > 1.:
model_inputs = torch.cat([latents] * 2)
else:
model_inputs = latents
if unconditioning is not None and isinstance(unconditioning, list):
_, text_embeddings = text_embeddings.chunk(2)
text_embeddings = torch.cat(
[unconditioning[i].expand(*text_embeddings.shape), text_embeddings])
# predict the noise
noise_pred = self.unet(
model_inputs, t, encoder_hidden_states=text_embeddings).sample
if guidance_scale > 1.0:
noise_pred_uncon, noise_pred_con = noise_pred.chunk(
2, dim=0)
noise_pred = noise_pred_uncon + guidance_scale * \
(noise_pred_con - noise_pred_uncon)
# compute the previous noise sample x_t -> x_t-1
# YUJUN: right now, the only difference between step here and step in scheduler
# is that scheduler version would clamp pred_x0 between [-1,1]
# don't know if that's gonna have huge impact
latents = self.scheduler.step(
noise_pred, t, latents, return_dict=False)[0]
return latents
@torch.no_grad()
def get_text_embeddings(self, prompt, guidance_scale, neg_prompt, batch_size):
DEVICE = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
text_embeddings = self.text_encoder(text_input.input_ids.cuda())[0]
if guidance_scale > 1.:
if neg_prompt:
uc_text = neg_prompt
else:
uc_text = ""
unconditional_input = self.tokenizer(
[uc_text] * batch_size,
padding="max_length",
max_length=77,
return_tensors="pt"
)
unconditional_embeddings = self.text_encoder(
unconditional_input.input_ids.to(DEVICE))[0]
text_embeddings = torch.cat(
[unconditional_embeddings, text_embeddings], dim=0)
return text_embeddings
def __call__(
self,
img_0=None,
img_1=None,
img_path_0=None,
img_path_1=None,
prompt_0="",
prompt_1="",
save_lora_dir="./lora",
load_lora_path_0=None,
load_lora_path_1=None,
lora_steps=200,
lora_lr=2e-4,
lora_rank=16,
batch_size=1,
height=512,
width=512,
num_inference_steps=50,
num_actual_inference_steps=None,
guidance_scale=1,
attn_beta=0,
lamb=0.6,
use_lora = True,
use_adain = True,
use_reschedule = True,
output_path = "./results",
num_frames=50,
fix_lora=None,
progress=tqdm,
unconditioning=None,
neg_prompt=None,
**kwds):
# if isinstance(prompt, list):
# batch_size = len(prompt)
# elif isinstance(prompt, str):
# if batch_size > 1:
# prompt = [prompt] * batch_size
self.scheduler.set_timesteps(num_inference_steps)
self.use_lora = use_lora
self.use_adain = use_adain
self.use_reschedule = use_reschedule
self.output_path = output_path
if img_0 is None:
img_0 = Image.open(img_path_0).convert("RGB")
# else:
# img_0 = Image.fromarray(img_0).convert("RGB")
if img_1 is None:
img_1 = Image.open(img_path_1).convert("RGB")
# else:
# img_1 = Image.fromarray(img_1).convert("RGB")
if self.use_lora:
print("Loading lora...")
if not load_lora_path_0:
weight_name = f"{output_path.split('/')[-1]}_lora_0.ckpt"
load_lora_path_0 = save_lora_dir + "/" + weight_name
if not os.path.exists(load_lora_path_0):
train_lora(img_0, prompt_0, save_lora_dir, None, self.tokenizer, self.text_encoder,
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
print(f"Load from {load_lora_path_0}.")
if load_lora_path_0.endswith(".safetensors"):
lora_0 = safetensors.torch.load_file(
load_lora_path_0, device="cpu")
else:
lora_0 = torch.load(load_lora_path_0, map_location="cpu")
if not load_lora_path_1:
weight_name = f"{output_path.split('/')[-1]}_lora_1.ckpt"
load_lora_path_1 = save_lora_dir + "/" + weight_name
if not os.path.exists(load_lora_path_1):
train_lora(img_1, prompt_1, save_lora_dir, None, self.tokenizer, self.text_encoder,
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
print(f"Load from {load_lora_path_1}.")
if load_lora_path_1.endswith(".safetensors"):
lora_1 = safetensors.torch.load_file(
load_lora_path_1, device="cpu")
else:
lora_1 = torch.load(load_lora_path_1, map_location="cpu")
text_embeddings_0 = self.get_text_embeddings(
prompt_0, guidance_scale, neg_prompt, batch_size)
text_embeddings_1 = self.get_text_embeddings(
prompt_1, guidance_scale, neg_prompt, batch_size)
img_0 = get_img(img_0)
img_1 = get_img(img_1)
if self.use_lora:
self.unet = load_lora(self.unet, lora_0, lora_1, 0)
img_noise_0 = self.ddim_inversion(
self.image2latent(img_0), text_embeddings_0)
if self.use_lora:
self.unet = load_lora(self.unet, lora_0, lora_1, 1)
img_noise_1 = self.ddim_inversion(
self.image2latent(img_1), text_embeddings_1)
print("latents shape: ", img_noise_0.shape)
def morph(alpha_list, progress, desc, save=False):
images = []
if attn_beta is not None:
self.unet = load_lora(self.unet, lora_0, lora_1, 0 if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
self.img0_dict, k)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
self.unet.set_attn_processor(attn_processor_dict)
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[0],
False,
fix_lora
)
first_image = self.latent2image(latents)
first_image = Image.fromarray(first_image)
if save:
first_image.save(f"{self.output_path}/{0:02d}.png")
self.unet = load_lora(self.unet, lora_0, lora_1, 1 if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
self.img1_dict, k)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
self.unet.set_attn_processor(attn_processor_dict)
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[-1],
False,
fix_lora
)
last_image = self.latent2image(latents)
last_image = Image.fromarray(last_image)
if save:
last_image.save(
f"{self.output_path}/{num_frames - 1:02d}.png")
for i in progress.tqdm(range(1, num_frames - 1), desc=desc):
alpha = alpha_list[i]
self.unet = load_lora(self.unet, lora_0, lora_1, alpha if fix_lora is None else fix_lora)
attn_processor_dict = {}
for k in self.unet.attn_processors.keys():
if do_replace_attn(k):
attn_processor_dict[k] = LoadProcessor(
self.unet.attn_processors[k], k, self.img0_dict, self.img1_dict, alpha, attn_beta, lamb)
else:
attn_processor_dict[k] = self.unet.attn_processors[k]
self.unet.set_attn_processor(attn_processor_dict)
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[i],
False,
fix_lora
)
image = self.latent2image(latents)
image = Image.fromarray(image)
if save:
image.save(f"{self.output_path}/{i:02d}.png")
images.append(image)
images = [first_image] + images + [last_image]
else:
for k, alpha in enumerate(alpha_list):
latents = self.cal_latent(
num_inference_steps,
guidance_scale,
unconditioning,
img_noise_0,
img_noise_1,
text_embeddings_0,
text_embeddings_1,
lora_0,
lora_1,
alpha_list[k],
self.use_lora,
fix_lora
)
image = self.latent2image(latents)
image = Image.fromarray(image)
if save:
image.save(f"{self.output_path}/{k:02d}.png")
images.append(image)
return images
with torch.no_grad():
if self.use_reschedule:
alpha_scheduler = AlphaScheduler()
alpha_list = list(torch.linspace(0, 1, num_frames))
images_pt = morph(alpha_list, progress, "Sampling...", False)
images_pt = [transforms.ToTensor()(img).unsqueeze(0)
for img in images_pt]
alpha_scheduler.from_imgs(images_pt)
alpha_list = alpha_scheduler.get_list()
print(alpha_list)
images = morph(alpha_list, progress, "Reschedule...", False)
else:
alpha_list = list(torch.linspace(0, 1, num_frames))
print(alpha_list)
images = morph(alpha_list, progress, "Sampling...", False)
return images
# os.makedirs(self.output_path, exist_ok=True)
# pipeline = DiffMorpherPipeline.from_pretrained(
# "./stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float32)
# pipeline.to("cuda")
# images = pipeline(
# args.image_path_0,
# args.image_path_1,
# args.prompt_0,
# args.prompt_1
# )
# images[0].save(f"{self.output_path}/output.gif", save_all=True,
# append_images=images[1:], duration=args.duration, loop=0)