Spaces:
Sleeping
Sleeping
import transformers | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,pipeline | |
from peft import PeftModel, PeftConfig | |
import streamlit as st | |
def load_model(): | |
config = PeftConfig.from_pretrained("Ketan3101/ConvoBrief") | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") | |
model = PeftModel.from_pretrained(model, "Ketan3101/ConvoBrief") | |
tokenizer=AutoTokenizer.from_pretrained("facebook/bart-large-cnn") | |
return model, tokenizer | |
def main(): | |
st.set_page_config(page_title="ConvoBrief", page_icon="π") | |
model,tokenizer=load_model() | |
st.title("ConvoBrief: A dialogue summarizer") | |
dialogue=st.text_area("Enter the Dialogue") | |
if st.button("Summarize Dialogue"): | |
if dialogue: | |
inputs=tokenizer(dialogue,return_tensors='pt') | |
summary=tokenizer.decode( | |
model.generate(input_ids=inputs['input_ids'], max_new_tokens=200, temperature=1.2001, do_sample=True)[0], | |
skip_special_tokens=True | |
) | |
st.subheader("Summarized Dialogue:") | |
st.write(summary) | |
st.error("The model has been trained on less parameters, so their might be minor errors") | |
else: | |
st.warning("No! Dialogue was given") | |
if __name__=="__main__": | |
main() |