Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import numpy as np | |
| from typing import List | |
| import fvcore.nn.weight_init as weight_init | |
| import torch | |
| from torch import nn | |
| from detectron2.config import configurable | |
| from detectron2.layers import Conv2d, ShapeSpec, get_norm | |
| from detectron2.utils.registry import Registry | |
| __all__ = ["FastRCNNConvFCHead", "build_box_head", "ROI_BOX_HEAD_REGISTRY"] | |
| ROI_BOX_HEAD_REGISTRY = Registry("ROI_BOX_HEAD") | |
| ROI_BOX_HEAD_REGISTRY.__doc__ = """ | |
| Registry for box heads, which make box predictions from per-region features. | |
| The registered object will be called with `obj(cfg, input_shape)`. | |
| """ | |
| # To get torchscript support, we make the head a subclass of `nn.Sequential`. | |
| # Therefore, to add new layers in this head class, please make sure they are | |
| # added in the order they will be used in forward(). | |
| class FastRCNNConvFCHead(nn.Sequential): | |
| """ | |
| A head with several 3x3 conv layers (each followed by norm & relu) and then | |
| several fc layers (each followed by relu). | |
| """ | |
| def __init__( | |
| self, input_shape: ShapeSpec, *, conv_dims: List[int], fc_dims: List[int], conv_norm="" | |
| ): | |
| """ | |
| NOTE: this interface is experimental. | |
| Args: | |
| input_shape (ShapeSpec): shape of the input feature. | |
| conv_dims (list[int]): the output dimensions of the conv layers | |
| fc_dims (list[int]): the output dimensions of the fc layers | |
| conv_norm (str or callable): normalization for the conv layers. | |
| See :func:`detectron2.layers.get_norm` for supported types. | |
| """ | |
| super().__init__() | |
| assert len(conv_dims) + len(fc_dims) > 0 | |
| self._output_size = (input_shape.channels, input_shape.height, input_shape.width) | |
| self.conv_norm_relus = [] | |
| for k, conv_dim in enumerate(conv_dims): | |
| conv = Conv2d( | |
| self._output_size[0], | |
| conv_dim, | |
| kernel_size=3, | |
| padding=1, | |
| bias=not conv_norm, | |
| norm=get_norm(conv_norm, conv_dim), | |
| activation=nn.ReLU(), | |
| ) | |
| self.add_module("conv{}".format(k + 1), conv) | |
| self.conv_norm_relus.append(conv) | |
| self._output_size = (conv_dim, self._output_size[1], self._output_size[2]) | |
| self.fcs = [] | |
| for k, fc_dim in enumerate(fc_dims): | |
| if k == 0: | |
| self.add_module("flatten", nn.Flatten()) | |
| fc = nn.Linear(int(np.prod(self._output_size)), fc_dim) | |
| self.add_module("fc{}".format(k + 1), fc) | |
| self.add_module("fc_relu{}".format(k + 1), nn.ReLU()) | |
| self.fcs.append(fc) | |
| self._output_size = fc_dim | |
| for layer in self.conv_norm_relus: | |
| weight_init.c2_msra_fill(layer) | |
| for layer in self.fcs: | |
| weight_init.c2_xavier_fill(layer) | |
| def from_config(cls, cfg, input_shape): | |
| num_conv = cfg.MODEL.ROI_BOX_HEAD.NUM_CONV | |
| conv_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_DIM | |
| num_fc = cfg.MODEL.ROI_BOX_HEAD.NUM_FC | |
| fc_dim = cfg.MODEL.ROI_BOX_HEAD.FC_DIM | |
| return { | |
| "input_shape": input_shape, | |
| "conv_dims": [conv_dim] * num_conv, | |
| "fc_dims": [fc_dim] * num_fc, | |
| "conv_norm": cfg.MODEL.ROI_BOX_HEAD.NORM, | |
| } | |
| def forward(self, x): | |
| for layer in self: | |
| x = layer(x) | |
| return x | |
| def output_shape(self): | |
| """ | |
| Returns: | |
| ShapeSpec: the output feature shape | |
| """ | |
| o = self._output_size | |
| if isinstance(o, int): | |
| return ShapeSpec(channels=o) | |
| else: | |
| return ShapeSpec(channels=o[0], height=o[1], width=o[2]) | |
| def build_box_head(cfg, input_shape): | |
| """ | |
| Build a box head defined by `cfg.MODEL.ROI_BOX_HEAD.NAME`. | |
| """ | |
| name = cfg.MODEL.ROI_BOX_HEAD.NAME | |
| return ROI_BOX_HEAD_REGISTRY.get(name)(cfg, input_shape) | |