KennethTM's picture
Create app.py
f94a9ea verified
import gradio as gr
import onnxruntime as ort
import numpy as np
from PIL import Image, ImageDraw
import cv2
image_size = 224
def normalize_image(image, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
image = (image/255.0).astype("float32")
image[:, :, 0] = (image[:, :, 0] - mean[0]) / std[0]
image[:, :, 1] = (image[:, :, 1] - mean[1]) / std[1]
image[:, :, 2] = (image[:, :, 2] - mean[2]) / std[2]
return image
def resize_longest_max_size(image, max_size=224):
height, width = image.shape[:2]
if width > height:
ratio = max_size / width
else:
ratio = max_size / height
new_width = int(width * ratio)
new_height = int(height * ratio)
resized_image = cv2.resize(image, (new_width, new_height), cv2.INTER_LINEAR)
return resized_image
def pad_if_needed(image, target_size):
height, width, _ = image.shape
y0 = abs((height-target_size)//2)
x0 = abs((width-target_size)//2)
background = np.zeros((target_size, target_size, 3), dtype="uint8")
background[y0:(y0+height), x0:(x0+width), :] = image
return(background)
def heatmap2keypoints(heatmap: np.ndarray, image_size: int = 224) -> list:
"Function to convert heatmap to keypoint x, y tensor"
indx = heatmap.reshape(-1, image_size*image_size).argmax(axis=1)
row = indx // image_size
col = indx % image_size
keypoints_array = np.stack((col, row), axis=1)
keypoints_list = keypoints_array.tolist()
return keypoints_list
def centercrop_keypoints(keypoints, crop_height, crop_width, image_height, image_width):
y_diff = (image_height-crop_height)//2
x_diff = (image_width-crop_width)//2
keypoints_crop = [[x-x_diff, y-y_diff] for x, y in keypoints]
return(keypoints_crop)
def resize_keypoints(keypoints, current_height, current_width, target_height, target_width):
keypoints_resize = []
for x, y in keypoints:
x_resize = (x/current_width)*target_width
y_resize = (y/current_height)*target_height
keypoints_resize.append([int(x_resize), int(y_resize)])
return(keypoints_resize)
def draw_keypoints(image, keypoints):
draw = ImageDraw.Draw(image)
w, h = image.size
for keypoint in keypoints:
x, y = keypoint
# Draw a small circle at each keypoint
radius = int(min(w, h) * 0.01)
draw.ellipse((x - radius, y - radius, x + radius, y + radius), fill='red', outline='red')
return image
def point_dist(p0, p1):
x0, y0 = p0
x1, y1 = p1
dist = ((x0-x1)**2 + (y0-y1)**2)**0.5
return dist
def receipt_asp_ratio(keypoints, mode = "mean"):
h0 = point_dist(keypoints[0], keypoints[3])
h1 = point_dist(keypoints[1], keypoints[2])
w0 = point_dist(keypoints[0], keypoints[1])
w1 = point_dist(keypoints[2], keypoints[3])
if mode == "max":
h = max(h0, h1)
w = max(w0, w1)
elif mode == "mean":
h = (h0+h1)/2
w = (w0+w1)/2
else:
return("UNKNOWN MODE")
return w/h
# Load the ONNX model
session = ort.InferenceSession("models/timm-mobilenetv3_small_100.onnx")
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
# Main function to handle the image input, apply preprocessing, run the model, and apply postprocessing
def process_image(input_image):
# Convert PIL image to OpenCV image
image = np.array(input_image.convert("RGB"))
h, w, _ = image.shape
# Preprocess the image
image_resize = resize_longest_max_size(image)
h_small, w_small, _ = image_resize.shape
image_pad = pad_if_needed(image_resize, target_size=image_size)
image_norm = normalize_image(image_pad)
image_array = np.transpose(image_norm, (2, 0, 1))
image_array = np.expand_dims(image_array, axis=0)
# Run model inference
output = session.run([output_name], {input_name: image_array})
output_keypoints = heatmap2keypoints(output[0].squeeze())
crop_keypoints = centercrop_keypoints(output_keypoints, h_small, w_small, image_size, image_size)
large_keypoints = resize_keypoints(crop_keypoints, h_small, w_small, h, w)
# Draw keypoints on the image
image_with_keypoints = draw_keypoints(input_image, large_keypoints)
persp_h = 1024
persp_asp = receipt_asp_ratio(large_keypoints, mode="max")
persp_w = int(persp_asp*persp_h)
origin_points = np.float32([[x, y] for x, y in large_keypoints])
target_points = np.float32([[0, 0], [persp_w-1, 0], [persp_w-1, persp_h-1], [0, persp_h-1]])
persp_matrix = cv2.getPerspectiveTransform(origin_points, target_points)
persp_image = cv2.warpPerspective(image, persp_matrix, (persp_w, persp_h), cv2.INTER_LINEAR)
output_image = Image.fromarray(persp_image)
return image_with_keypoints, output_image
demo_images = [
"demo_images/image_1.jpg",
"demo_images/image_2.jpg",
"demo_images/image_3.jpg",
"demo_images/image_flux_1.png",
"demo_images/image_flux_2.png",
]
# Create Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Document corner detection and perspective correction")
gr.Markdown("Upload an image to detect the corners of a document and correct the perspective.\n\nUses a UNet model to detect corners and OpenCV to correct the perspective.")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Image", show_label=True, scale=1)
with gr.Column():
output_image1 = gr.Image(type="pil", label="Image with predicted corners", show_label=True, scale=1)
with gr.Column():
output_image2 = gr.Image(type="pil", label="Image with perspective correction", show_label=True, scale=1)
with gr.Row():
examples = gr.Examples(demo_images, input_image, cache_examples=False, label="Exampled documents (CORD dataset and FLUX.1-schnell generated)")
input_image.change(fn=process_image, inputs=input_image, outputs=[output_image1, output_image2])
gr.Markdown("Created by Kenneth Thorø Martinsen (kenneth2810@gmail.com)")
iface.launch()