Spaces:
Running
Running
import os | |
from typing import List | |
import numpy as np | |
import pooch | |
from PIL import Image | |
from PIL.Image import Image as PILImage | |
from scipy.special import log_softmax | |
from .base import BaseSession | |
palette1 = [ | |
0, | |
0, | |
0, | |
255, | |
255, | |
255, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
] | |
palette2 = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
255, | |
255, | |
255, | |
0, | |
0, | |
0, | |
] | |
palette3 = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
255, | |
255, | |
255, | |
] | |
class Unet2ClothSession(BaseSession): | |
def predict(self, img: PILImage, *args, **kwargs) -> List[PILImage]: | |
""" | |
Predict the cloth category of an image. | |
This method takes an image as input and predicts the cloth category of the image. | |
The method uses the inner_session to make predictions using a pre-trained model. | |
The predicted mask is then converted to an image and resized to match the size of the input image. | |
Depending on the cloth category specified in the method arguments, the method applies different color palettes to the mask and appends the resulting images to a list. | |
Parameters: | |
img (PILImage): The input image. | |
*args: Additional positional arguments. | |
**kwargs: Additional keyword arguments. | |
Returns: | |
List[PILImage]: A list of images representing the predicted masks. | |
""" | |
ort_outs = self.inner_session.run( | |
None, | |
self.normalize( | |
img, (0.485, 0.456, 0.406), (0.229, 0.224, 0.225), (768, 768) | |
), | |
) | |
pred = ort_outs | |
pred = log_softmax(pred[0], 1) | |
pred = np.argmax(pred, axis=1, keepdims=True) | |
pred = np.squeeze(pred, 0) | |
pred = np.squeeze(pred, 0) | |
mask = Image.fromarray(pred.astype("uint8"), mode="L") | |
mask = mask.resize(img.size, Image.Resampling.LANCZOS) | |
masks = [] | |
cloth_category = kwargs.get("cc") or kwargs.get("cloth_category") | |
def upper_cloth(): | |
mask1 = mask.copy() | |
mask1.putpalette(palette1) | |
mask1 = mask1.convert("RGB").convert("L") | |
masks.append(mask1) | |
def lower_cloth(): | |
mask2 = mask.copy() | |
mask2.putpalette(palette2) | |
mask2 = mask2.convert("RGB").convert("L") | |
masks.append(mask2) | |
def full_cloth(): | |
mask3 = mask.copy() | |
mask3.putpalette(palette3) | |
mask3 = mask3.convert("RGB").convert("L") | |
masks.append(mask3) | |
if cloth_category == "upper": | |
upper_cloth() | |
elif cloth_category == "lower": | |
lower_cloth() | |
elif cloth_category == "full": | |
full_cloth() | |
else: | |
upper_cloth() | |
lower_cloth() | |
full_cloth() | |
return masks | |
def download_models(cls, *args, **kwargs): | |
fname = f"{cls.name(*args, **kwargs)}.onnx" | |
pooch.retrieve( | |
"https://github.com/danielgatis/rembg/releases/download/v0.0.0/u2net_cloth_seg.onnx", | |
( | |
None | |
if cls.checksum_disabled(*args, **kwargs) | |
else "md5:2434d1f3cb744e0e49386c906e5a08bb" | |
), | |
fname=fname, | |
path=cls.u2net_home(*args, **kwargs), | |
progressbar=True, | |
) | |
return os.path.join(cls.u2net_home(*args, **kwargs), fname) | |
def name(cls, *args, **kwargs): | |
return "u2net_cloth_seg" | |