Spaces:
Running
Running
''' | |
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) | |
@author: yangxy (yangtao9009@gmail.com) | |
''' | |
import os | |
import cv2 | |
import glob | |
import time | |
import numpy as np | |
from PIL import Image | |
import __init_paths | |
from face_model.face_gan import FaceGAN | |
class FaceColorization(object): | |
def __init__(self, base_dir='./', size=1024, out_size=None, model=None, channel_multiplier=2, narrow=1, key=None, device='cuda'): | |
self.facegan = FaceGAN(base_dir, size, out_size, model, channel_multiplier, narrow, key, device=device) | |
# make sure the face image is well aligned. Please refer to face_enhancement.py | |
def process(self, gray): | |
# colorize the face | |
out = self.facegan.process(gray) | |
return out | |
if __name__=='__main__': | |
model = {'name':'GPEN-1024-Color', 'size':1024} | |
indir = 'examples/grays' | |
outdir = 'examples/couts' | |
os.makedirs(outdir, exist_ok=True) | |
facecolorizer = FaceColorization(size=model['size'], model=model['name']) | |
files = sorted(glob.glob(os.path.join(indir, '*.*g'))) | |
for n, file in enumerate(files[:]): | |
filename = os.path.basename(file) | |
grayf = cv2.imread(file, cv2.IMREAD_GRAYSCALE) | |
grayf = cv2.cvtColor(grayf, cv2.COLOR_GRAY2BGR) # channel: 1->3 | |
colorf = facecolorizer.process(grayf) | |
colorf = cv2.resize(colorf, (grayf.shape[1], grayf.shape[0])) | |
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'.jpg'), grayf) | |
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'_COMP.jpg'), np.hstack((grayf, colorf))) | |
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'_GPEN.jpg'), colorf) | |
if n%10==0: print(n, file) | |