|
|
|
import gradio as gr |
|
from PIL import Image |
|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms |
|
from torchvision.models import vit_b_16, vit_l_16, ViT_B_16_Weights, ViT_L_16_Weights |
|
from huggingface_hub import hf_hub_download |
|
from langchain.chains import RetrievalQA |
|
from langchain.prompts import PromptTemplate |
|
from qdrant_client import QdrantClient |
|
from langchain_community.vectorstores import Qdrant |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_openai import ChatOpenAI |
|
import os |
|
import io |
|
from fpdf import FPDF |
|
|
|
|
|
multilabel_class_names = [ |
|
"Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch", |
|
"Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae", |
|
"Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis", |
|
"Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped", |
|
"Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow", |
|
"Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma", |
|
"Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst" |
|
] |
|
|
|
multiclass_class_names = [ |
|
"systemic", "hair", "drug_reactions", "uriticaria", "acne", "light", |
|
"autoimmune", "papulosquamous", "eczema", "skincancer", |
|
"benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections" |
|
] |
|
|
|
|
|
class SkinViT(nn.Module): |
|
def __init__(self, num_classes): |
|
super().__init__() |
|
self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT) |
|
in_features = self.model.heads.head.in_features |
|
self.model.heads.head = nn.Linear(in_features, num_classes) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
class DermNetViT(nn.Module): |
|
def __init__(self, num_classes): |
|
super().__init__() |
|
self.model = vit_l_16(weights=ViT_L_16_Weights.DEFAULT) |
|
in_features = self.model.heads[0].in_features |
|
self.model.heads = nn.Sequential( |
|
nn.Linear(in_features, 1024), |
|
nn.ReLU(), |
|
nn.Linear(1024, num_classes) |
|
) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth") |
|
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth") |
|
|
|
multilabel_model = SkinViT(num_classes=len(multilabel_class_names)) |
|
multiclass_model = DermNetViT(num_classes=len(multiclass_class_names)) |
|
multilabel_model.load_state_dict(torch.load(multilabel_model_path, map_location="cpu")) |
|
multiclass_model.load_state_dict(torch.load(multiclass_model_path, map_location="cpu")) |
|
multilabel_model.eval() |
|
multiclass_model.eval() |
|
|
|
|
|
llm = ChatOpenAI(model="gpt-4o", temperature=0.2) |
|
|
|
qdrant_client = QdrantClient( |
|
url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io", |
|
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q" |
|
) |
|
|
|
local_embedding = HuggingFaceEmbeddings( |
|
model_name="Alibaba-NLP/gte-Qwen2-1.5B-instruct", |
|
model_kwargs={"trust_remote_code": True, "device": "cpu"} |
|
) |
|
|
|
vector_store = Qdrant( |
|
client=qdrant_client, |
|
collection_name="ks_collection_1.5BE", |
|
embeddings=local_embedding |
|
) |
|
|
|
retriever = vector_store.as_retriever() |
|
|
|
|
|
AI_PROMPT_TEMPLATE = """You are an AI-assisted Dermatology Chatbot, specializing in diagnosing and educating users about skin diseases. |
|
You provide accurate, compassionate, and detailed explanations while using correct medical terminology. |
|
|
|
Guidelines: |
|
1. Symptoms - Explain in simple terms with proper medical definitions. |
|
2. Causes - Include genetic, environmental, and lifestyle-related risk factors. |
|
3. Medications & Treatments - Provide common prescription and over-the-counter treatments. |
|
4. Warnings & Emergencies - Always recommend consulting a licensed dermatologist. |
|
5. Emergency Note - If symptoms worsen or include difficulty breathing, **advise calling 911 immediately. |
|
|
|
Query: {question} |
|
Relevant Information: {context} |
|
Answer: |
|
""" |
|
|
|
|
|
|
|
prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"]) |
|
|
|
rag_chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"} |
|
) |
|
|
|
|
|
def run_diagnosis(image): |
|
transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]) |
|
]) |
|
input_tensor = transform(image).unsqueeze(0) |
|
with torch.no_grad(): |
|
probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().numpy() |
|
predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5] |
|
pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item() |
|
predicted_single = multiclass_class_names[pred_idx] |
|
return predicted_multi, predicted_single |
|
|
|
|
|
def chat_with_bot(image, history=[]): |
|
predicted_multi, predicted_single = run_diagnosis(image) |
|
query = f"What are my treatment options for {predicted_multi} and {predicted_single}?" |
|
response = rag_chain.invoke(query)["result"] |
|
history.append((f"User: {query}", f"AI: {response}")) |
|
return response, history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# 🧬 DermBOT — Skin AI Assistant") |
|
chatbot = gr.Chatbot() |
|
img_input = gr.Image(type="pil") |
|
output_text = gr.Textbox(label="DermBOT Response") |
|
btn = gr.Button("Analyze & Diagnose") |
|
|
|
state = gr.State([]) |
|
btn.click(fn=chat_with_bot, inputs=[img_input, state], outputs=[output_text, state]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|