Spaces:
Sleeping
Sleeping
Update backend.py
Browse files- backend.py +67 -98
backend.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# backend.py β
|
| 2 |
import sqlite3
|
| 3 |
import threading
|
| 4 |
import time
|
|
@@ -14,38 +14,22 @@ import shutil
|
|
| 14 |
|
| 15 |
DB_PATH = "llm_kitchen.db"
|
| 16 |
training_queue = []
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
RUN_TIMEOUT = 48 * 3600 # 48 hours
|
| 20 |
MAX_RAM_PER_RUN_GB = 1.5
|
| 21 |
|
| 22 |
-
# ------------------------------ DATABASE ------------------------------
|
| 23 |
-
|
| 24 |
def init_db():
|
| 25 |
conn = sqlite3.connect(DB_PATH, check_same_thread=False)
|
| 26 |
cursor = conn.cursor()
|
| 27 |
cursor.executescript("""
|
| 28 |
-
CREATE TABLE IF NOT EXISTS users (
|
| 29 |
-
|
| 30 |
-
hf_token TEXT UNIQUE NOT NULL,
|
| 31 |
-
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
|
| 32 |
-
);
|
| 33 |
-
CREATE TABLE IF NOT EXISTS training_runs (
|
| 34 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 35 |
-
user_id INTEGER NOT NULL,
|
| 36 |
-
arch_type TEXT NOT NULL,
|
| 37 |
-
num_layers INTEGER NOT NULL,
|
| 38 |
-
learning_rate REAL NOT NULL,
|
| 39 |
-
epochs INTEGER NOT NULL,
|
| 40 |
-
batch_size INTEGER NOT NULL,
|
| 41 |
-
status TEXT DEFAULT 'queued',
|
| 42 |
-
logs TEXT DEFAULT '',
|
| 43 |
-
started_at DATETIME,
|
| 44 |
-
completed_at DATETIME,
|
| 45 |
-
FOREIGN KEY (user_id) REFERENCES users(id)
|
| 46 |
-
);
|
| 47 |
""")
|
| 48 |
-
conn.commit()
|
| 49 |
conn.close()
|
| 50 |
|
| 51 |
init_db()
|
|
@@ -69,10 +53,7 @@ def create_user(hf_token):
|
|
| 69 |
return user_id
|
| 70 |
|
| 71 |
def create_training_run(user_id, config):
|
| 72 |
-
_, run_id = db_query(""
|
| 73 |
-
INSERT INTO training_runs (user_id, arch_type, num_layers, learning_rate, epochs, batch_size)
|
| 74 |
-
VALUES (?, ?, ?, ?, ?, ?)
|
| 75 |
-
""", (user_id, config['arch_type'], config['num_layers'], config['learning_rate'], config['epochs'], config['batch_size']))
|
| 76 |
return run_id
|
| 77 |
|
| 78 |
def get_user_runs(user_id):
|
|
@@ -98,8 +79,7 @@ def log_update(message, run_id):
|
|
| 98 |
if run_id > 0:
|
| 99 |
db_query("UPDATE training_runs SET logs = logs || ? || ? WHERE id = ?", ('\n', full_msg, run_id))
|
| 100 |
|
| 101 |
-
# ------------------------------ AUTH ------------------------------
|
| 102 |
-
|
| 103 |
def verify_hf_token(token):
|
| 104 |
try:
|
| 105 |
whoami(token=token)
|
|
@@ -111,7 +91,7 @@ def verify_hf_token(token):
|
|
| 111 |
except Exception as e:
|
| 112 |
return None, f"Invalid token. Please try again. ({str(e)})"
|
| 113 |
|
| 114 |
-
# ------------------------------ TRAINING QUEUE ------------------------------
|
| 115 |
|
| 116 |
def ram_available():
|
| 117 |
return (psutil.virtual_memory().available / (1024**3)) >= MAX_RAM_PER_RUN_GB
|
|
@@ -122,34 +102,53 @@ def queue_training_run(user_id, config):
|
|
| 122 |
return run_id
|
| 123 |
|
| 124 |
def start_training_if_free():
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
log_update(f"Run {run_id}: π₯ 48-HOUR TIMEOUT REACHED. Terminating.", run_id)
|
| 148 |
update_run_status(run_id, "timeout")
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
class CNNLanguageModel(nn.Module):
|
| 154 |
def __init__(self, vocab_size, embed_dim=128, num_layers=4):
|
| 155 |
super().__init__()
|
|
@@ -165,7 +164,6 @@ class CNNLanguageModel(nn.Module):
|
|
| 165 |
logits = self.fc(x)
|
| 166 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 167 |
return {"loss": loss, "logits": logits}
|
| 168 |
-
|
| 169 |
class RNNLanguageModel(nn.Module):
|
| 170 |
def __init__(self, vocab_size, embed_dim=128, hidden_dim=256, num_layers=2):
|
| 171 |
super().__init__()
|
|
@@ -178,7 +176,6 @@ class RNNLanguageModel(nn.Module):
|
|
| 178 |
logits = self.fc(output)
|
| 179 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 180 |
return {"loss": loss, "logits": logits}
|
| 181 |
-
|
| 182 |
class TransformerLanguageModel(nn.Module):
|
| 183 |
def __init__(self, vocab_size, embed_dim=128, num_heads=4, num_layers=3):
|
| 184 |
super().__init__()
|
|
@@ -192,13 +189,10 @@ class TransformerLanguageModel(nn.Module):
|
|
| 192 |
logits = self.fc(x)
|
| 193 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 194 |
return {"loss": loss, "logits": logits}
|
| 195 |
-
|
| 196 |
def get_model(arch_type, vocab_size, num_layers):
|
| 197 |
models = {"cnn": CNNLanguageModel, "rnn": RNNLanguageModel, "transformer": TransformerLanguageModel}
|
| 198 |
if arch_type not in models: raise ValueError(f"Unknown arch: {arch_type}")
|
| 199 |
return models[arch_type](vocab_size, num_layers=num_layers)
|
| 200 |
-
|
| 201 |
-
# ------------------------------ DATASET ------------------------------
|
| 202 |
class TextDataset(Dataset):
|
| 203 |
def __init__(self, tokenized_data):
|
| 204 |
self.data = tokenized_data["input_ids"]
|
|
@@ -207,58 +201,41 @@ class TextDataset(Dataset):
|
|
| 207 |
def __getitem__(self, idx):
|
| 208 |
return {"input_ids": torch.tensor(self.data[idx]), "labels": torch.tensor(self.data[idx])}
|
| 209 |
|
| 210 |
-
# ------------------------------ TRAINING JOB
|
| 211 |
|
| 212 |
def run_training_job(job):
|
| 213 |
-
global active_run_id
|
| 214 |
run_id = job["run_id"]
|
|
|
|
| 215 |
try:
|
| 216 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 217 |
log_update(f"π Device = {device} | RAM available: {psutil.virtual_memory().available / (1024**3):.2f} GB", run_id)
|
| 218 |
-
|
| 219 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 220 |
tokenizer.pad_token = tokenizer.eos_token
|
| 221 |
tokenizer_save_path = f"./runs/{run_id}/tokenizer"
|
| 222 |
os.makedirs(tokenizer_save_path, exist_ok=True)
|
| 223 |
tokenizer.save_pretrained(tokenizer_save_path)
|
| 224 |
log_update(f"πΎ Tokenizer saved to {tokenizer_save_path}", run_id)
|
| 225 |
-
|
| 226 |
model = get_model(job["arch_type"], len(tokenizer), job["num_layers"]).to(device)
|
| 227 |
log_update(f"π§± Model initialized: {job['arch_type']} x{job['num_layers']} layers", run_id)
|
| 228 |
-
|
| 229 |
dataset = load_dataset("voidful/reasoning_gemini_300k", split="train[:5000]")
|
| 230 |
-
|
| 231 |
-
tokenized_dataset = dataset.map(
|
| 232 |
-
lambda ex: tokenizer(
|
| 233 |
-
[q + " " + a for q, a in zip(ex["message"], ex["answer"])],
|
| 234 |
-
truncation=True,
|
| 235 |
-
padding="max_length", # <-- THE FIX IS HERE
|
| 236 |
-
max_length=128
|
| 237 |
-
),
|
| 238 |
-
batched=True,
|
| 239 |
-
remove_columns=dataset.column_names
|
| 240 |
-
)
|
| 241 |
train_loader = DataLoader(TextDataset(tokenized_dataset), batch_size=job["batch_size"], shuffle=True)
|
| 242 |
optimizer = torch.optim.AdamW(model.parameters(), lr=job["learning_rate"])
|
| 243 |
-
|
| 244 |
model.train()
|
| 245 |
log_update(f"βΆοΈ Starting training for {job['epochs']} epochs...", run_id)
|
| 246 |
-
|
| 247 |
for epoch in range(job["epochs"]):
|
| 248 |
for step, batch in enumerate(train_loader):
|
| 249 |
input_ids = batch["input_ids"].to(device)
|
| 250 |
labels = batch["labels"].to(device)
|
| 251 |
-
|
| 252 |
optimizer.zero_grad()
|
| 253 |
outputs = model(input_ids, labels=labels)
|
| 254 |
loss = outputs["loss"]
|
| 255 |
loss.backward()
|
| 256 |
optimizer.step()
|
| 257 |
-
|
| 258 |
if step % 50 == 0:
|
| 259 |
log_update(f"Epoch {epoch+1} | Step {step} | Loss: {loss.item():.4f}", run_id)
|
| 260 |
log_update(f"β
Epoch {epoch+1} completed.", run_id)
|
| 261 |
-
|
| 262 |
model_path = f"./runs/{run_id}"
|
| 263 |
os.makedirs(model_path, exist_ok=True)
|
| 264 |
torch.save(model.state_dict(), f"{model_path}/pytorch_model.bin")
|
|
@@ -273,49 +250,41 @@ def run_training_job(job):
|
|
| 273 |
log_update(success_message, run_id)
|
| 274 |
update_run_status(run_id, "completed")
|
| 275 |
finally:
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
| 278 |
start_training_if_free()
|
| 279 |
|
| 280 |
-
# ------------------------------ INFERENCE
|
| 281 |
-
|
| 282 |
def run_inference(run_id, prompt):
|
| 283 |
model_path = f"./runs/{run_id}/pytorch_model.bin"
|
| 284 |
tokenizer_path = f"./runs/{run_id}/tokenizer"
|
| 285 |
if not (os.path.exists(model_path) and os.path.exists(tokenizer_path)):
|
| 286 |
return "ModelError: Model or tokenizer files not found."
|
| 287 |
-
|
| 288 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 289 |
rows, _ = db_query("SELECT arch_type, num_layers FROM training_runs WHERE id = ?", (run_id,))
|
| 290 |
if not rows: return "ModelError: Run not found in database."
|
| 291 |
-
|
| 292 |
arch_type, num_layers = rows[0]
|
| 293 |
model = get_model(arch_type, len(tokenizer), num_layers)
|
| 294 |
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
| 295 |
model.eval()
|
| 296 |
-
|
| 297 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 298 |
input_ids = inputs.input_ids
|
| 299 |
-
|
| 300 |
with torch.no_grad():
|
| 301 |
outputs = model(input_ids)
|
| 302 |
logits = outputs["logits"]
|
| 303 |
generated_ids = torch.argmax(logits, dim=-1)
|
| 304 |
return f"π§βπ³ Model says:\n{tokenizer.decode(generated_ids[0], skip_special_tokens=True)}"
|
| 305 |
-
|
| 306 |
-
# ------------------------------ PUBLISH TO HUB ------------------------------
|
| 307 |
-
|
| 308 |
def publish_run_to_hub(run_id, hf_token, repo_name, user_description=""):
|
| 309 |
local_dir = f"./runs/{run_id}/hub_upload"
|
| 310 |
shutil.rmtree(local_dir, ignore_errors=True)
|
| 311 |
os.makedirs(local_dir, exist_ok=True)
|
| 312 |
-
|
| 313 |
shutil.copy(f"./runs/{run_id}/pytorch_model.bin", f"{local_dir}/pytorch_model.bin")
|
| 314 |
shutil.copytree(f"./runs/{run_id}/tokenizer", f"{local_dir}/tokenizer", dirs_exist_ok=True)
|
| 315 |
-
|
| 316 |
readme_content = user_description.strip() or f"# Model from LLM Kitchen - Run #{run_id}"
|
| 317 |
with open(f"{local_dir}/README.md", "w") as f: f.write(readme_content)
|
| 318 |
-
|
| 319 |
api = HfApi()
|
| 320 |
repo_url = api.create_repo(repo_id=repo_name, token=hf_token, exist_ok=True).repo_id
|
| 321 |
api.upload_folder(folder_path=local_dir, repo_id=repo_url, token=hf_token)
|
|
|
|
| 1 |
+
# backend.py β PARALLEL PROCESSING VERSION
|
| 2 |
import sqlite3
|
| 3 |
import threading
|
| 4 |
import time
|
|
|
|
| 14 |
|
| 15 |
DB_PATH = "llm_kitchen.db"
|
| 16 |
training_queue = []
|
| 17 |
+
# --- NEW STATE MANAGEMENT FOR PARALLELISM ---
|
| 18 |
+
active_runs = set() # Stores run_ids of currently running jobs
|
| 19 |
+
active_users = set() # Stores user_ids of users with a currently running job
|
| 20 |
+
scheduler_lock = threading.Lock() # Protects access to the queue and active sets
|
| 21 |
+
# --- CONSTANTS ---
|
| 22 |
RUN_TIMEOUT = 48 * 3600 # 48 hours
|
| 23 |
MAX_RAM_PER_RUN_GB = 1.5
|
| 24 |
|
| 25 |
+
# ------------------------------ DATABASE (No Changes Needed) ------------------------------
|
|
|
|
| 26 |
def init_db():
|
| 27 |
conn = sqlite3.connect(DB_PATH, check_same_thread=False)
|
| 28 |
cursor = conn.cursor()
|
| 29 |
cursor.executescript("""
|
| 30 |
+
CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY AUTOINCREMENT, hf_token TEXT UNIQUE NOT NULL, created_at DATETIME DEFAULT CURRENT_TIMESTAMP);
|
| 31 |
+
CREATE TABLE IF NOT EXISTS training_runs (id INTEGER PRIMARY KEY AUTOINCREMENT, user_id INTEGER NOT NULL, arch_type TEXT NOT NULL, num_layers INTEGER NOT NULL, learning_rate REAL NOT NULL, epochs INTEGER NOT NULL, batch_size INTEGER NOT NULL, status TEXT DEFAULT 'queued', logs TEXT DEFAULT '', started_at DATETIME, completed_at DATETIME, FOREIGN KEY (user_id) REFERENCES users(id));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
""")
|
|
|
|
| 33 |
conn.close()
|
| 34 |
|
| 35 |
init_db()
|
|
|
|
| 53 |
return user_id
|
| 54 |
|
| 55 |
def create_training_run(user_id, config):
|
| 56 |
+
_, run_id = db_query("INSERT INTO training_runs (user_id, arch_type, num_layers, learning_rate, epochs, batch_size) VALUES (?, ?, ?, ?, ?, ?)", (user_id, config['arch_type'], config['num_layers'], config['learning_rate'], config['epochs'], config['batch_size']))
|
|
|
|
|
|
|
|
|
|
| 57 |
return run_id
|
| 58 |
|
| 59 |
def get_user_runs(user_id):
|
|
|
|
| 79 |
if run_id > 0:
|
| 80 |
db_query("UPDATE training_runs SET logs = logs || ? || ? WHERE id = ?", ('\n', full_msg, run_id))
|
| 81 |
|
| 82 |
+
# ------------------------------ AUTH (No Changes Needed) ------------------------------
|
|
|
|
| 83 |
def verify_hf_token(token):
|
| 84 |
try:
|
| 85 |
whoami(token=token)
|
|
|
|
| 91 |
except Exception as e:
|
| 92 |
return None, f"Invalid token. Please try again. ({str(e)})"
|
| 93 |
|
| 94 |
+
# ------------------------------ NEW PARALLEL TRAINING QUEUE ------------------------------
|
| 95 |
|
| 96 |
def ram_available():
|
| 97 |
return (psutil.virtual_memory().available / (1024**3)) >= MAX_RAM_PER_RUN_GB
|
|
|
|
| 102 |
return run_id
|
| 103 |
|
| 104 |
def start_training_if_free():
|
| 105 |
+
"""
|
| 106 |
+
The new scheduler. Tries to start as many jobs as possible from the queue
|
| 107 |
+
based on available RAM and the one-run-per-user constraint.
|
| 108 |
+
"""
|
| 109 |
+
with scheduler_lock:
|
| 110 |
+
# Iterate through a copy of the queue as we might modify it
|
| 111 |
+
for job in list(training_queue):
|
| 112 |
+
# 1. Check for global resource constraint (RAM)
|
| 113 |
+
if not ram_available():
|
| 114 |
+
log_update("MemoryWarning: Not enough RAM for new runs. Waiting.", -1)
|
| 115 |
+
break # Stop trying to schedule if we're out of RAM
|
| 116 |
+
|
| 117 |
+
# 2. Check for per-user constraint
|
| 118 |
+
if job["user_id"] in active_users:
|
| 119 |
+
continue # Skip this job, user already has a run. Check next job.
|
| 120 |
+
|
| 121 |
+
# --- If we get here, we can start the job ---
|
| 122 |
+
log_update(f"Scheduler: Starting run #{job['run_id']} for user #{job['user_id']}", -1)
|
| 123 |
+
|
| 124 |
+
# Update state to reflect the new running job
|
| 125 |
+
active_runs.add(job["run_id"])
|
| 126 |
+
active_users.add(job["user_id"])
|
| 127 |
+
training_queue.remove(job)
|
| 128 |
+
|
| 129 |
+
# Update database and start the training thread
|
| 130 |
+
update_run_status(job["run_id"], "running")
|
| 131 |
+
log_update("π³ Starting kitchen process...", job["run_id"])
|
| 132 |
+
|
| 133 |
+
thread = threading.Thread(target=run_training_job, args=(job,))
|
| 134 |
+
thread.start()
|
| 135 |
+
threading.Timer(RUN_TIMEOUT, kill_run_timeout, args=[job]).start()
|
| 136 |
+
|
| 137 |
+
def kill_run_timeout(job):
|
| 138 |
+
run_id = job["run_id"]
|
| 139 |
+
user_id = job["user_id"]
|
| 140 |
+
with scheduler_lock:
|
| 141 |
+
if run_id in active_runs:
|
| 142 |
log_update(f"Run {run_id}: π₯ 48-HOUR TIMEOUT REACHED. Terminating.", run_id)
|
| 143 |
update_run_status(run_id, "timeout")
|
| 144 |
+
# Free up resources
|
| 145 |
+
active_runs.discard(run_id)
|
| 146 |
+
active_users.discard(user_id)
|
| 147 |
+
# Try to schedule a new job now that resources are free
|
| 148 |
+
start_training_if_free()
|
| 149 |
+
|
| 150 |
+
# ------------------------------ MODELS & DATASET (No Changes Needed) -------------------------
|
| 151 |
+
# ... (All model and dataset classes are unchanged) ...
|
| 152 |
class CNNLanguageModel(nn.Module):
|
| 153 |
def __init__(self, vocab_size, embed_dim=128, num_layers=4):
|
| 154 |
super().__init__()
|
|
|
|
| 164 |
logits = self.fc(x)
|
| 165 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 166 |
return {"loss": loss, "logits": logits}
|
|
|
|
| 167 |
class RNNLanguageModel(nn.Module):
|
| 168 |
def __init__(self, vocab_size, embed_dim=128, hidden_dim=256, num_layers=2):
|
| 169 |
super().__init__()
|
|
|
|
| 176 |
logits = self.fc(output)
|
| 177 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 178 |
return {"loss": loss, "logits": logits}
|
|
|
|
| 179 |
class TransformerLanguageModel(nn.Module):
|
| 180 |
def __init__(self, vocab_size, embed_dim=128, num_heads=4, num_layers=3):
|
| 181 |
super().__init__()
|
|
|
|
| 189 |
logits = self.fc(x)
|
| 190 |
loss = nn.CrossEntropyLoss()(logits.view(-1, logits.size(-1)), labels.view(-1)) if labels is not None else None
|
| 191 |
return {"loss": loss, "logits": logits}
|
|
|
|
| 192 |
def get_model(arch_type, vocab_size, num_layers):
|
| 193 |
models = {"cnn": CNNLanguageModel, "rnn": RNNLanguageModel, "transformer": TransformerLanguageModel}
|
| 194 |
if arch_type not in models: raise ValueError(f"Unknown arch: {arch_type}")
|
| 195 |
return models[arch_type](vocab_size, num_layers=num_layers)
|
|
|
|
|
|
|
| 196 |
class TextDataset(Dataset):
|
| 197 |
def __init__(self, tokenized_data):
|
| 198 |
self.data = tokenized_data["input_ids"]
|
|
|
|
| 201 |
def __getitem__(self, idx):
|
| 202 |
return {"input_ids": torch.tensor(self.data[idx]), "labels": torch.tensor(self.data[idx])}
|
| 203 |
|
| 204 |
+
# ------------------------------ TRAINING JOB (Updated `finally` block) -----------------------
|
| 205 |
|
| 206 |
def run_training_job(job):
|
|
|
|
| 207 |
run_id = job["run_id"]
|
| 208 |
+
user_id = job["user_id"] # Get user_id for state management
|
| 209 |
try:
|
| 210 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 211 |
log_update(f"π Device = {device} | RAM available: {psutil.virtual_memory().available / (1024**3):.2f} GB", run_id)
|
| 212 |
+
# (The core training logic remains the same)
|
| 213 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 214 |
tokenizer.pad_token = tokenizer.eos_token
|
| 215 |
tokenizer_save_path = f"./runs/{run_id}/tokenizer"
|
| 216 |
os.makedirs(tokenizer_save_path, exist_ok=True)
|
| 217 |
tokenizer.save_pretrained(tokenizer_save_path)
|
| 218 |
log_update(f"πΎ Tokenizer saved to {tokenizer_save_path}", run_id)
|
|
|
|
| 219 |
model = get_model(job["arch_type"], len(tokenizer), job["num_layers"]).to(device)
|
| 220 |
log_update(f"π§± Model initialized: {job['arch_type']} x{job['num_layers']} layers", run_id)
|
|
|
|
| 221 |
dataset = load_dataset("voidful/reasoning_gemini_300k", split="train[:5000]")
|
| 222 |
+
tokenized_dataset = dataset.map(lambda ex: tokenizer([q + " " + a for q, a in zip(ex["message"], ex["answer"])], truncation=True, padding="max_length", max_length=128), batched=True, remove_columns=dataset.column_names)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
train_loader = DataLoader(TextDataset(tokenized_dataset), batch_size=job["batch_size"], shuffle=True)
|
| 224 |
optimizer = torch.optim.AdamW(model.parameters(), lr=job["learning_rate"])
|
|
|
|
| 225 |
model.train()
|
| 226 |
log_update(f"βΆοΈ Starting training for {job['epochs']} epochs...", run_id)
|
|
|
|
| 227 |
for epoch in range(job["epochs"]):
|
| 228 |
for step, batch in enumerate(train_loader):
|
| 229 |
input_ids = batch["input_ids"].to(device)
|
| 230 |
labels = batch["labels"].to(device)
|
|
|
|
| 231 |
optimizer.zero_grad()
|
| 232 |
outputs = model(input_ids, labels=labels)
|
| 233 |
loss = outputs["loss"]
|
| 234 |
loss.backward()
|
| 235 |
optimizer.step()
|
|
|
|
| 236 |
if step % 50 == 0:
|
| 237 |
log_update(f"Epoch {epoch+1} | Step {step} | Loss: {loss.item():.4f}", run_id)
|
| 238 |
log_update(f"β
Epoch {epoch+1} completed.", run_id)
|
|
|
|
| 239 |
model_path = f"./runs/{run_id}"
|
| 240 |
os.makedirs(model_path, exist_ok=True)
|
| 241 |
torch.save(model.state_dict(), f"{model_path}/pytorch_model.bin")
|
|
|
|
| 250 |
log_update(success_message, run_id)
|
| 251 |
update_run_status(run_id, "completed")
|
| 252 |
finally:
|
| 253 |
+
# --- NEW: Free up resources and trigger scheduler ---
|
| 254 |
+
with scheduler_lock:
|
| 255 |
+
active_runs.discard(run_id)
|
| 256 |
+
active_users.discard(user_id)
|
| 257 |
start_training_if_free()
|
| 258 |
|
| 259 |
+
# ------------------------------ INFERENCE & PUBLISH (No Changes Needed) --------------------
|
| 260 |
+
# ... (run_inference and publish_run_to_hub are unchanged) ...
|
| 261 |
def run_inference(run_id, prompt):
|
| 262 |
model_path = f"./runs/{run_id}/pytorch_model.bin"
|
| 263 |
tokenizer_path = f"./runs/{run_id}/tokenizer"
|
| 264 |
if not (os.path.exists(model_path) and os.path.exists(tokenizer_path)):
|
| 265 |
return "ModelError: Model or tokenizer files not found."
|
|
|
|
| 266 |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 267 |
rows, _ = db_query("SELECT arch_type, num_layers FROM training_runs WHERE id = ?", (run_id,))
|
| 268 |
if not rows: return "ModelError: Run not found in database."
|
|
|
|
| 269 |
arch_type, num_layers = rows[0]
|
| 270 |
model = get_model(arch_type, len(tokenizer), num_layers)
|
| 271 |
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
| 272 |
model.eval()
|
|
|
|
| 273 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 274 |
input_ids = inputs.input_ids
|
|
|
|
| 275 |
with torch.no_grad():
|
| 276 |
outputs = model(input_ids)
|
| 277 |
logits = outputs["logits"]
|
| 278 |
generated_ids = torch.argmax(logits, dim=-1)
|
| 279 |
return f"π§βπ³ Model says:\n{tokenizer.decode(generated_ids[0], skip_special_tokens=True)}"
|
|
|
|
|
|
|
|
|
|
| 280 |
def publish_run_to_hub(run_id, hf_token, repo_name, user_description=""):
|
| 281 |
local_dir = f"./runs/{run_id}/hub_upload"
|
| 282 |
shutil.rmtree(local_dir, ignore_errors=True)
|
| 283 |
os.makedirs(local_dir, exist_ok=True)
|
|
|
|
| 284 |
shutil.copy(f"./runs/{run_id}/pytorch_model.bin", f"{local_dir}/pytorch_model.bin")
|
| 285 |
shutil.copytree(f"./runs/{run_id}/tokenizer", f"{local_dir}/tokenizer", dirs_exist_ok=True)
|
|
|
|
| 286 |
readme_content = user_description.strip() or f"# Model from LLM Kitchen - Run #{run_id}"
|
| 287 |
with open(f"{local_dir}/README.md", "w") as f: f.write(readme_content)
|
|
|
|
| 288 |
api = HfApi()
|
| 289 |
repo_url = api.create_repo(repo_id=repo_name, token=hf_token, exist_ok=True).repo_id
|
| 290 |
api.upload_folder(folder_path=local_dir, repo_id=repo_url, token=hf_token)
|