Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from models.dit import DiTConVBlock | |
class DitWrapper(nn.Module): | |
""" add FiLM layer to condition time embedding to DiT """ | |
def __init__(self, hidden_channels, filter_channels, num_heads, kernel_size=3, p_dropout=0.1, gin_channels=0, time_channels=0): | |
super().__init__() | |
self.time_fusion = FiLMLayer(hidden_channels, time_channels) | |
self.conv1 = ConvNeXtBlock(hidden_channels, filter_channels, gin_channels) | |
self.conv2 = ConvNeXtBlock(hidden_channels, filter_channels, gin_channels) | |
self.conv3 = ConvNeXtBlock(hidden_channels, filter_channels, gin_channels) | |
self.block = DiTConVBlock(hidden_channels, hidden_channels, num_heads, kernel_size, p_dropout, gin_channels) | |
def forward(self, x, c, t, x_mask): | |
x = self.time_fusion(x, t) * x_mask | |
x = self.conv1(x, c, x_mask) | |
x = self.conv2(x, c, x_mask) | |
x = self.conv3(x, c, x_mask) | |
x = self.block(x, c, x_mask) | |
return x | |
class FiLMLayer(nn.Module): | |
""" | |
Feature-wise Linear Modulation (FiLM) layer | |
Reference: https://arxiv.org/abs/1709.07871 | |
""" | |
def __init__(self, in_channels, cond_channels): | |
super(FiLMLayer, self).__init__() | |
self.in_channels = in_channels | |
self.film = nn.Conv1d(cond_channels, in_channels * 2, 1) | |
def forward(self, x, c): | |
gamma, beta = torch.chunk(self.film(c.unsqueeze(2)), chunks=2, dim=1) | |
return gamma * x + beta | |
class ConvNeXtBlock(nn.Module): | |
def __init__(self, in_channels, filter_channels, gin_channels): | |
super().__init__() | |
self.dwconv = nn.Conv1d(in_channels, in_channels, kernel_size=7, padding=3, groups=in_channels) | |
self.norm = StyleAdaptiveLayerNorm(in_channels, gin_channels) | |
self.pwconv = nn.Sequential(nn.Linear(in_channels, filter_channels), | |
nn.GELU(), | |
nn.Linear(filter_channels, in_channels)) | |
def forward(self, x, c, x_mask) -> torch.Tensor: | |
residual = x | |
x = self.dwconv(x) * x_mask | |
x = self.norm(x.transpose(1, 2), c) | |
x = self.pwconv(x).transpose(1, 2) | |
x = residual + x | |
return x * x_mask | |
class StyleAdaptiveLayerNorm(nn.Module): | |
def __init__(self, in_channels, cond_channels): | |
""" | |
Style Adaptive Layer Normalization (SALN) module. | |
Parameters: | |
in_channels: The number of channels in the input feature maps. | |
cond_channels: The number of channels in the conditioning input. | |
""" | |
super(StyleAdaptiveLayerNorm, self).__init__() | |
self.in_channels = in_channels | |
self.saln = nn.Linear(cond_channels, in_channels * 2, 1) | |
self.norm = nn.LayerNorm(in_channels, elementwise_affine=False) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.constant_(self.saln.bias.data[:self.in_channels], 1) | |
nn.init.constant_(self.saln.bias.data[self.in_channels:], 0) | |
def forward(self, x, c): | |
gamma, beta = torch.chunk(self.saln(c.unsqueeze(1)), chunks=2, dim=-1) | |
return gamma * self.norm(x) + beta | |
class SinusoidalPosEmb(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" | |
def forward(self, x, scale=1000): | |
if x.ndim < 1: | |
x = x.unsqueeze(0) | |
half_dim = self.dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, device=x.device).float() * -emb) | |
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class TimestepEmbedding(nn.Module): | |
def __init__(self, in_channels, out_channels, filter_channels): | |
super().__init__() | |
self.layer = nn.Sequential( | |
nn.Linear(in_channels, filter_channels), | |
nn.SiLU(inplace=True), | |
nn.Linear(filter_channels, out_channels) | |
) | |
def forward(self, x): | |
return self.layer(x) | |
# reference: https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/decoder.py | |
class Decoder(nn.Module): | |
def __init__(self, hidden_channels, out_channels, filter_channels, dropout=0.05, n_layers=1, n_heads=4, kernel_size=3, gin_channels=0): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.out_channels = out_channels | |
self.filter_channels = filter_channels | |
self.time_embeddings = SinusoidalPosEmb(hidden_channels) | |
self.time_mlp = TimestepEmbedding(hidden_channels, hidden_channels, filter_channels) | |
self.blocks = nn.ModuleList([DitWrapper(hidden_channels, filter_channels, n_heads, kernel_size, dropout, gin_channels, hidden_channels) for _ in range(n_layers)]) | |
self.final_proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
self.initialize_weights() | |
def initialize_weights(self): | |
for block in self.blocks: | |
nn.init.constant_(block.block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.block.adaLN_modulation[-1].bias, 0) | |
def forward(self, x, mask, mu, t, c): | |
"""Forward pass of the UNet1DConditional model. | |
Args: | |
x (torch.Tensor): shape (batch_size, in_channels, time) | |
mask (_type_): shape (batch_size, 1, time) | |
t (_type_): shape (batch_size) | |
c (_type_): shape (batch_size, gin_channels) | |
Raises: | |
ValueError: _description_ | |
ValueError: _description_ | |
Returns: | |
_type_: _description_ | |
""" | |
t = self.time_mlp(self.time_embeddings(t)) | |
x = torch.cat((x, mu), dim=1) | |
for block in self.blocks: | |
x = block(x, c, t, mask) | |
output = self.final_proj(x * mask) | |
return output * mask |