StableTTS_en-demo / models /estimator.py
KdaiP's picture
Upload 238 files
d358e26 verified
raw
history blame
6.03 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.dit import DiTConVBlock
class DitWrapper(nn.Module):
""" add FiLM layer to condition time embedding to DiT """
def __init__(self, hidden_channels, filter_channels, num_heads, kernel_size=3, p_dropout=0.1, gin_channels=0, time_channels=0):
super().__init__()
self.time_fusion = FiLMLayer(hidden_channels, time_channels)
self.conv1 = ConvNeXtBlock(hidden_channels, filter_channels, gin_channels)
self.conv2 = ConvNeXtBlock(hidden_channels, filter_channels, gin_channels)
self.conv3 = ConvNeXtBlock(hidden_channels, filter_channels, gin_channels)
self.block = DiTConVBlock(hidden_channels, hidden_channels, num_heads, kernel_size, p_dropout, gin_channels)
def forward(self, x, c, t, x_mask):
x = self.time_fusion(x, t) * x_mask
x = self.conv1(x, c, x_mask)
x = self.conv2(x, c, x_mask)
x = self.conv3(x, c, x_mask)
x = self.block(x, c, x_mask)
return x
class FiLMLayer(nn.Module):
"""
Feature-wise Linear Modulation (FiLM) layer
Reference: https://arxiv.org/abs/1709.07871
"""
def __init__(self, in_channels, cond_channels):
super(FiLMLayer, self).__init__()
self.in_channels = in_channels
self.film = nn.Conv1d(cond_channels, in_channels * 2, 1)
def forward(self, x, c):
gamma, beta = torch.chunk(self.film(c.unsqueeze(2)), chunks=2, dim=1)
return gamma * x + beta
class ConvNeXtBlock(nn.Module):
def __init__(self, in_channels, filter_channels, gin_channels):
super().__init__()
self.dwconv = nn.Conv1d(in_channels, in_channels, kernel_size=7, padding=3, groups=in_channels)
self.norm = StyleAdaptiveLayerNorm(in_channels, gin_channels)
self.pwconv = nn.Sequential(nn.Linear(in_channels, filter_channels),
nn.GELU(),
nn.Linear(filter_channels, in_channels))
def forward(self, x, c, x_mask) -> torch.Tensor:
residual = x
x = self.dwconv(x) * x_mask
x = self.norm(x.transpose(1, 2), c)
x = self.pwconv(x).transpose(1, 2)
x = residual + x
return x * x_mask
class StyleAdaptiveLayerNorm(nn.Module):
def __init__(self, in_channels, cond_channels):
"""
Style Adaptive Layer Normalization (SALN) module.
Parameters:
in_channels: The number of channels in the input feature maps.
cond_channels: The number of channels in the conditioning input.
"""
super(StyleAdaptiveLayerNorm, self).__init__()
self.in_channels = in_channels
self.saln = nn.Linear(cond_channels, in_channels * 2, 1)
self.norm = nn.LayerNorm(in_channels, elementwise_affine=False)
self.reset_parameters()
def reset_parameters(self):
nn.init.constant_(self.saln.bias.data[:self.in_channels], 1)
nn.init.constant_(self.saln.bias.data[self.in_channels:], 0)
def forward(self, x, c):
gamma, beta = torch.chunk(self.saln(c.unsqueeze(1)), chunks=2, dim=-1)
return gamma * self.norm(x) + beta
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
def forward(self, x, scale=1000):
if x.ndim < 1:
x = x.unsqueeze(0)
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=x.device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class TimestepEmbedding(nn.Module):
def __init__(self, in_channels, out_channels, filter_channels):
super().__init__()
self.layer = nn.Sequential(
nn.Linear(in_channels, filter_channels),
nn.SiLU(inplace=True),
nn.Linear(filter_channels, out_channels)
)
def forward(self, x):
return self.layer(x)
# reference: https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/decoder.py
class Decoder(nn.Module):
def __init__(self, hidden_channels, out_channels, filter_channels, dropout=0.05, n_layers=1, n_heads=4, kernel_size=3, gin_channels=0):
super().__init__()
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.time_embeddings = SinusoidalPosEmb(hidden_channels)
self.time_mlp = TimestepEmbedding(hidden_channels, hidden_channels, filter_channels)
self.blocks = nn.ModuleList([DitWrapper(hidden_channels, filter_channels, n_heads, kernel_size, dropout, gin_channels, hidden_channels) for _ in range(n_layers)])
self.final_proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.initialize_weights()
def initialize_weights(self):
for block in self.blocks:
nn.init.constant_(block.block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.block.adaLN_modulation[-1].bias, 0)
def forward(self, x, mask, mu, t, c):
"""Forward pass of the UNet1DConditional model.
Args:
x (torch.Tensor): shape (batch_size, in_channels, time)
mask (_type_): shape (batch_size, 1, time)
t (_type_): shape (batch_size)
c (_type_): shape (batch_size, gin_channels)
Raises:
ValueError: _description_
ValueError: _description_
Returns:
_type_: _description_
"""
t = self.time_mlp(self.time_embeddings(t))
x = torch.cat((x, mu), dim=1)
for block in self.blocks:
x = block(x, c, t, mask)
output = self.final_proj(x * mask)
return output * mask