Kc-12 commited on
Commit
b4eb45f
1 Parent(s): d8aca91

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. better_transformer.py +4 -5
app.py CHANGED
@@ -66,7 +66,7 @@ def main():
66
 
67
  # model_version = st.radio("Which model would you like to use?", ["smoll", "beeg"])
68
  # small_model = load_casey_model(tokenizer, device)
69
- model = load_big_model(tokenizer, device)
70
 
71
 
72
 
@@ -83,7 +83,7 @@ def main():
83
 
84
 
85
  with st.spinner(""):
86
- result = generate(model, tokenizer, device, method=generation_method, k=specified_k,
87
  p_nucleus=specified_nucleus, temp=specified_temperature, max_new_tokens=max_tokens,
88
  cond=user_input, deterministic=user_seed)
89
 
 
66
 
67
  # model_version = st.radio("Which model would you like to use?", ["smoll", "beeg"])
68
  # small_model = load_casey_model(tokenizer, device)
69
+ model = load_big_model(tokenizer, 'cuda')
70
 
71
 
72
 
 
83
 
84
 
85
  with st.spinner(""):
86
+ result = generate(model, tokenizer, 'cuda', method=generation_method, k=specified_k,
87
  p_nucleus=specified_nucleus, temp=specified_temperature, max_new_tokens=max_tokens,
88
  cond=user_input, deterministic=user_seed)
89
 
better_transformer.py CHANGED
@@ -139,9 +139,8 @@ class BetterTransformer(nn.Module):
139
  self.seq_length = seq_length
140
  self.pad_idx = pad_idx
141
  self.eos_token_id = eos_token_id
142
- self.device = device
143
  self.init_params()
144
- st.title(f"Device: {device}")
145
 
146
  # optional weight initialization (e.g. Xavier uniform)
147
  def init_params(self, default_initialization=False):
@@ -295,7 +294,7 @@ def load_tokenizer(device):
295
  tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
296
  if tokenizer.pad_token is None:
297
  tokenizer.add_special_tokens({'pad_token': '[PAD]'})
298
- EMPTY_TOKENS = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to(device)
299
  return tokenizer, EMPTY_TOKENS
300
 
301
 
@@ -363,7 +362,7 @@ def generate(model, tokenizer, device, method=None, k=None,
363
 
364
  cond_tokens = tokenizer(cond).input_ids
365
 
366
- gen_tokens = model.generate(torch.tensor(cond_tokens).unsqueeze(0).long().to(device),
367
  method=method, k=k, p_nucleus=p_nucleus, temp=temp,
368
  max_new_tokens=max_new_tokens)[0]
369
 
@@ -379,7 +378,7 @@ def generate(model, tokenizer, device, method=None, k=None,
379
 
380
 
381
  else:
382
- empty_tokens = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to(device)
383
 
384
  res = tokenizer.batch_decode(model.generate(empty_tokens,
385
  method=method, k=k,
 
139
  self.seq_length = seq_length
140
  self.pad_idx = pad_idx
141
  self.eos_token_id = eos_token_id
142
+ self.device = 'cuda'
143
  self.init_params()
 
144
 
145
  # optional weight initialization (e.g. Xavier uniform)
146
  def init_params(self, default_initialization=False):
 
294
  tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
295
  if tokenizer.pad_token is None:
296
  tokenizer.add_special_tokens({'pad_token': '[PAD]'})
297
+ EMPTY_TOKENS = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to('cuda')
298
  return tokenizer, EMPTY_TOKENS
299
 
300
 
 
362
 
363
  cond_tokens = tokenizer(cond).input_ids
364
 
365
+ gen_tokens = model.generate(torch.tensor(cond_tokens).unsqueeze(0).long().to('cuda'),
366
  method=method, k=k, p_nucleus=p_nucleus, temp=temp,
367
  max_new_tokens=max_new_tokens)[0]
368
 
 
378
 
379
 
380
  else:
381
+ empty_tokens = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to('cuda')
382
 
383
  res = tokenizer.batch_decode(model.generate(empty_tokens,
384
  method=method, k=k,