Kayson's picture
sync
7ae68fe
# --------------------------------------------------------
# InstructDiffusion
# Based on instruct-pix2pix (https://github.com/timothybrooks/instruct-pix2pix)
# Removed Pytorch-lightning and supported deepspeed by Zigang Geng (zigang@mail.ustc.edu.cn)
# --------------------------------------------------------
import argparse, os, sys, datetime, glob
import numpy as np
import time
import json
import pickle
import wandb
import deepspeed
from packaging import version
from omegaconf import OmegaConf
from functools import partial
from PIL import Image
from timm.utils import AverageMeter
import torch
import torchvision
import torch.cuda.amp as amp
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, Dataset, ConcatDataset
sys.path.append("./stable_diffusion")
from ldm.data.base import Txt2ImgIterableBaseDataset
from ldm.util import instantiate_from_config
from ldm.modules.ema import LitEma
from utils.logger import create_logger
from utils.utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper
from utils.deepspeed import create_ds_config
def wandb_log(*args, **kwargs):
if dist.get_rank() == 0:
wandb.log(*args, **kwargs)
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=False,
nargs="?",
help="train",
)
parser.add_argument(
"--no-test",
type=str2bool,
const=True,
default=False,
nargs="?",
help="disable test",
)
parser.add_argument(
"-p",
"--project",
help="name of new or path to existing project"
)
parser.add_argument(
"-d",
"--debug",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enable post-mortem debugging",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=23,
help="seed for seed_everything",
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="logs",
help="directory for logging dat shit",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="scale base-lr by ngpu * batch_size * n_accumulate",
)
parser.add_argument(
"--amd",
action="store_true",
default=False,
help="amd",
)
parser.add_argument(
"--local_rank",
type=int,
# required=False,
default=int(os.environ.get('LOCAL_RANK', 0)),
help="local rank for DistributedDataParallel",
)
return parser
class WrappedDataset(Dataset):
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
def __init__(self, dataset):
self.data = dataset
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class DataModuleFromConfig():
def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
shuffle_val_dataloader=False):
super().__init__()
self.batch_size = batch_size
self.dataset_configs = dict()
self.num_workers = num_workers if num_workers is not None else batch_size * 2
self.use_worker_init_fn = use_worker_init_fn
if train is not None:
if "target" in train:
self.dataset_configs["train"] = train
self.train_dataloader = self._train_dataloader
else:
for ds in train:
ds_name = str([key for key in ds.keys()][0])
self.dataset_configs[ds_name] = ds
self.train_dataloader = self._train_concat_dataloader
if validation is not None:
self.dataset_configs["validation"] = validation
self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
if test is not None:
self.dataset_configs["test"] = test
self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
if predict is not None:
self.dataset_configs["predict"] = predict
self.predict_dataloader = self._predict_dataloader
self.wrap = wrap
def prepare_data(self):
for data_cfg in self.dataset_configs.values():
instantiate_from_config(data_cfg)
def setup(self, stage=None):
self.datasets = dict(
(k, instantiate_from_config(self.dataset_configs[k]))
for k in self.dataset_configs)
if self.wrap:
for k in self.datasets:
self.datasets[k] = WrappedDataset(self.datasets[k])
def _train_concat_dataloader(self):
is_iterable_dataset = isinstance(self.datasets['ds1'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
concat_dataset = []
for ds in self.datasets.keys():
concat_dataset.append(self.datasets[ds])
concat_dataset = ConcatDataset(concat_dataset)
sampler_train = torch.utils.data.DistributedSampler(
concat_dataset, num_replicas=dist.get_world_size(), rank=dist.get_rank(), shuffle=True
)
return DataLoader(concat_dataset, batch_size=self.batch_size, sampler=sampler_train,
num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True)
def _train_dataloader(self):
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
sampler_train = torch.utils.data.DistributedSampler(
self.datasets["train"], num_replicas=dist.get_world_size(), rank=dist.get_rank(), shuffle=True
)
return DataLoader(self.datasets["train"], batch_size=self.batch_size, sampler=sampler_train,
num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True)
def _val_dataloader(self, shuffle=False):
if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(self.datasets["validation"],
batch_size=self.batch_size,
num_workers=self.num_workers,
worker_init_fn=init_fn,
shuffle=shuffle, persistent_workers=True)
def _test_dataloader(self, shuffle=False):
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
if is_iterable_dataset or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
# do not shuffle dataloader for iterable dataset
shuffle = shuffle and (not is_iterable_dataset)
return DataLoader(self.datasets["test"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle, persistent_workers=True)
def _predict_dataloader(self, shuffle=False):
if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
init_fn = worker_init_fn
else:
init_fn = None
return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
num_workers=self.num_workers, worker_init_fn=init_fn, persistent_workers=True)
def train_one_epoch(config, model, model_ema, data_loader, val_data_loader, optimizer, epoch, lr_scheduler, scaler):
model.train()
optimizer.zero_grad()
num_steps = len(data_loader)
accumul_steps = config.trainer.accumulate_grad_batches
batch_time = AverageMeter()
loss_meter = AverageMeter()
val_loss_meter = AverageMeter()
norm_meter = AverageMeter()
loss_scale_meter = AverageMeter()
loss_scale_meter_min = AverageMeter()
start = time.time()
end = time.time()
for idx, batch in enumerate(data_loader):
batch_size = batch['edited'].shape[0]
if config.model.params.deepspeed != '':
loss, _ = model(batch, idx, accumul_steps)
model.backward(loss)
model.step()
loss_scale = optimizer.cur_scale
grad_norm = model.get_global_grad_norm()
with torch.no_grad():
if idx % config.trainer.accumulate_grad_batches == 0:
model_ema(model)
loss_number = loss.item()
else:
with amp.autocast(enabled=config.model.params.fp16):
loss, _ = model(batch, idx, accumul_steps)
if config.trainer.accumulate_grad_batches > 1:
loss = loss / config.trainer.accumulate_grad_batches
scaler.scale(loss).backward()
# loss.backward()
if config.trainer.clip_grad > 0.0:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.trainer.clip_grad)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.trainer.accumulate_grad_batches == 0:
scaler.step(optimizer)
optimizer.zero_grad()
scaler.update()
# scaler.unscale_grads()
# optimizer.step()
# optimizer.zero_grad()
# lr_scheduler.step_update(epoch * num_steps + idx)
else:
optimizer.zero_grad()
scaler.scale(loss).backward()
if config.trainer.clip_grad > 0.0:
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.trainer.clip_grad)
else:
grad_norm = get_grad_norm(model.parameters())
scaler.step(optimizer)
scaler.update()
# lr_scheduler.step_update(epoch * num_steps + idx)
loss_scale = scaler.get_scale()
loss_number = loss.item() * config.trainer.accumulate_grad_batches
torch.cuda.synchronize()
loss_meter.update(loss_number, batch_size)
if grad_norm is not None:
norm_meter.update(grad_norm)
else:
norm_meter.update(0.0)
loss_scale_meter.update(loss_scale)
# loss_scale_meter.update(0.0)
batch_time.update(time.time() - end)
end = time.time()
if idx % 100 == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
logger.info(
f'Train: [{epoch}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'loss_scale {loss_scale_meter.val:.4f} ({loss_scale_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
if (epoch * num_steps + idx) % 100 == 0:
log_message = dict(
lr=optimizer.param_groups[0]['lr'],
time=batch_time.val,
epoch=epoch,
iter=idx,
loss=loss_meter.val,
grad_norm=norm_meter.val,
loss_scale=loss_scale_meter.val,
memory=torch.cuda.max_memory_allocated() / (1024.0 * 1024.0),
global_iter=epoch * num_steps + idx)
# log_message.update({'ref_img': wandb.Image(unnormalize(img[:8].cpu().float())), 'mask': wandb.Image(mask[:8].cpu().float().unsqueeze(1))})
# if x_rec is not None:
# log_message.update({'rec_img': wandb.Image(unnormalize(x_rec[:8].cpu().float()))})
wandb_log(
data=log_message,
step=epoch * num_steps + idx,
)
if idx == num_steps - 1:
with torch.no_grad():
model_ema.store(model.parameters())
model_ema.copy_to(model)
for val_idx, batch in enumerate(val_data_loader):
batch_size = batch['edited'].shape[0]
loss, _ = model(batch, -1, 1)
loss_number = loss.item()
val_loss_meter.update(loss_number, batch_size)
if val_idx % 10 == 0:
logger.info(
f'Val: [{val_idx}/{len(val_data_loader)}]\t'
f'loss {val_loss_meter.val:.4f} ({val_loss_meter.avg:.4f})\t')
if val_idx == 50:
break
model_ema.restore(model.parameters())
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
if __name__ == "__main__":
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# add cwd for convenience and to make classes in this file available when
# running as `python main.py`
# (in particular `main.DataModuleFromConfig`)
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
assert opt.name
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
nowname = f"{cfg_name}_{opt.name}"
logdir = os.path.join(opt.logdir, nowname)
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
if opt.amd:
os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.local_rank)
torch.distributed.init_process_group(backend='gloo', init_method='env://', world_size=world_size, rank=rank)
else:
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
seed = opt.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
os.makedirs(logdir, exist_ok=True)
os.makedirs(ckptdir, exist_ok=True)
os.makedirs(cfgdir, exist_ok=True)
# init and save configs
# config: the configs in the config file
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
if config.model.params.deepspeed != '':
create_ds_config(opt, config, cfgdir)
if dist.get_rank() == 0:
run = wandb.init(
id=nowname,
name=nowname,
project='readoutpose',
config=OmegaConf.to_container(config, resolve=True),
)
logger = create_logger(output_dir=logdir, dist_rank=dist.get_rank(), name=f"{nowname}")
resume_file = auto_resume_helper(config, ckptdir)
if resume_file:
resume = True
logger.info(f'resume checkpoint in {resume_file}')
else:
resume = False
logger.info(f'no checkpoint found in {ckptdir}, ignoring auto resume')
# model
model = instantiate_from_config(config.model)
model_ema = LitEma(model, decay_resume=config.model.params.get('ema_resume', 0.9999))
# data
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.prepare_data()
data.setup()
data_loader_train = data.train_dataloader()
data_loader_val = data.val_dataloader()
print("#### Data #####")
for k in data.datasets:
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
# configure learning rate
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
ngpu = dist.get_world_size()
if 'accumulate_grad_batches' in config.trainer:
accumulate_grad_batches = config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
if opt.scale_lr:
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print(
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
else:
model.learning_rate = base_lr
print("++++ NOT USING LR SCALING ++++")
print(f"Setting learning rate to {model.learning_rate:.2e}")
if not opt.amd:
model.cuda()
if config.model.params.fp16 and config.model.params.deepspeed == '':
scaler = amp.GradScaler()
param_groups = model.parameters()
else:
scaler = None
param_groups = model.parameters()
if config.model.params.deepspeed != '':
model, optimizer, _, _ = deepspeed.initialize(
args=config,
model=model,
model_parameters=param_groups,
dist_init_required=False,
)
for name, param in model.named_parameters():
param.global_name = name
model_without_ddp = model
lr_scheduler = None
model_ema = model_ema.to(next(model.parameters()).device)
else:
optimizer, lr_scheduler = model.configure_optimizers()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[opt.local_rank], broadcast_buffers=False)
model_without_ddp = model.module
# print(optimizer.param_groups[1])
if opt.resume != '':
resume_file = opt.resume
if resume_file:
_, start_epoch = load_checkpoint(resume_file, config, model_without_ddp, model_ema, optimizer, lr_scheduler, scaler, logger)
else:
start_epoch = 0
logger.info("Start training")
start_time = time.time()
for epoch in range(start_epoch, config.trainer.max_epochs):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch(config, model, model_ema, data_loader_train, data_loader_val, optimizer, epoch, lr_scheduler, scaler)
if epoch % config.trainer.save_freq == 0:
save_checkpoint(ckptdir, config, epoch, model_without_ddp, model_ema, 0., optimizer, lr_scheduler, scaler, logger)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))