|
|
|
from PIL import Image |
|
import gradio as gr |
|
import torch |
|
import requests |
|
import re |
|
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, TrOCRProcessor, VisionEncoderDecoderModel |
|
|
|
|
|
img_urls_1 = ['https://i.pinimg.com/564x/f7/f5/bd/f7f5bd929e05a852ff423e6e02deea54.jpg', 'https://i.pinimg.com/564x/b4/29/69/b4296962cb76a72354a718109835caa3.jpg', |
|
'https://i.pinimg.com/564x/f2/68/8e/f2688eccd6dd60fdad89ef78950b9ead.jpg'] |
|
for idx1, url1 in enumerate(img_urls_1): |
|
image = Image.open(requests.get(url1, stream=True).raw) |
|
image.save(f"image_{idx1}.png") |
|
|
|
|
|
img_urls_2 = ['https://i.pinimg.com/564x/14/b0/07/14b0075ccd5ea35f7deffc9e5bd6de30.jpg', 'https://newsimg.bbc.co.uk/media/images/45510000/jpg/_45510184_the_writings_466_180.jpg', |
|
'https://cdn.shopify.com/s/files/1/0047/1524/9737/files/Cetaphil_Face_Wash_Ingredients_Optimized.png?v=1680923920', 'https://github.com/kawther12h/Image_Captioning-and-Text_Recognition/blob/main/handText22.jpg?raw=true','https://github.com/kawther12h/Image_Captioning-and-Text_Recognition/blob/main/handText11.jpg?raw=true'] |
|
for idx2, url2 in enumerate(img_urls_2): |
|
image = Image.open(requests.get(url2, stream=True).raw) |
|
image.save(f"tx_image_{idx2}.png") |
|
|
|
|
|
processor_blip = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") |
|
|
|
|
|
translate = pipeline("translation",model="marefa-nlp/marefa-mt-en-ar") |
|
|
|
def caption_and_translate(img, min_len, max_len): |
|
|
|
raw_image = Image.open(img).convert('RGB') |
|
inputs_blip = processor_blip(raw_image, return_tensors="pt") |
|
out_blip = model_blip.generate(**inputs_blip, min_length=5, max_length=50) |
|
english_caption = processor_blip.decode(out_blip[0], skip_special_tokens=True) |
|
|
|
|
|
arabic_caption = translate(english_caption) |
|
arabic_caption = arabic_caption[0]['translation_text'] |
|
translated_caption = f'<div dir="rtl">{arabic_caption}</div>' |
|
|
|
|
|
return english_caption, translated_caption |
|
|
|
|
|
|
|
img_cap_en_ar = gr.Interface( |
|
fn=caption_and_translate, |
|
inputs=[gr.Image(type='filepath', label='Image'), |
|
gr.Slider(label='Minimum Length', minimum=1, maximum=500, value=30), |
|
gr.Slider(label='Maximum Length', minimum=1, maximum=500, value=100)], |
|
outputs=[gr.Textbox(label='English Caption'), |
|
gr.HTML(label='Arabic Caption')], |
|
title='Image Captioning | وصف الصورة', |
|
description="Upload an image to generate an English & Arabic caption | قم برفع صورة وأرسلها ليظهر لك وصف للصورة", |
|
examples =[["image_2.png"]] |
|
) |
|
|
|
|
|
|
|
text_rec = pipeline("image-to-text", model="jinhybr/OCR-Donut-CORD") |
|
|
|
|
|
translate = pipeline("translation",model="marefa-nlp/marefa-mt-en-ar") |
|
|
|
|
|
def extract_text(image): |
|
|
|
result = text_rec(image) |
|
|
|
|
|
text = result[0]['generated_text'] |
|
text = re.sub(r'<[^>]*>', '', text) |
|
|
|
|
|
arabic_text3 = translate(text) |
|
arabic_text3 = arabic_text3[0]['translation_text'] |
|
htranslated_text = f'<div dir="rtl">{arabic_text3}</div>' |
|
|
|
|
|
return text,htranslated_text |
|
|
|
|
|
text_recognition = gr.Interface( |
|
fn=extract_text, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Textbox(label='Extracted text'), gr.HTML(label= 'Translateted of Extracted text ')], |
|
title="Text Extraction and Translation | إستخراج النص وترجمتة", |
|
description="Upload an image then Submet to extract text and translate it to Arabic| قم برفع الصورة وأرسلها ليظهر لك النص من الصورة", |
|
examples =[["tx_image_0.png"]], |
|
) |
|
|
|
|
|
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-handwritten') |
|
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-handwritten') |
|
|
|
|
|
translate = pipeline("translation",model="marefa-nlp/marefa-mt-en-ar") |
|
|
|
def recognize_handwritten_text(image2): |
|
|
|
pixel_values = processor(images=image2, return_tensors="pt").pixel_values |
|
generated_ids = model.generate(pixel_values) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
arabic_text2 = translate(generated_text) |
|
arabic_text2 = arabic_text2[0]['translation_text'] |
|
htranslated_text = f'<div dir="rtl">{arabic_text2}</div>' |
|
|
|
|
|
return generated_text, htranslated_text |
|
|
|
|
|
handwritten_rec = gr.Interface( |
|
fn=recognize_handwritten_text, |
|
inputs=gr.Image(label="Upload Image"), |
|
outputs=[gr.Textbox(label='English Text'), |
|
gr.HTML(label='Arabic Text')], |
|
title="Handwritten Text Extraction | | إستخراج النص المكتوب بخط اليد وترجمتة", |
|
description="Upload an image then Submet to extract text and translate it to Arabic| قم برفع الصورة وأرسلها ليظهر لك النص من الصورة", |
|
examples =[["tx_image_1.png"]] |
|
) |
|
|
|
|
|
demo = gr.TabbedInterface([img_cap_en_ar, text_recognition, handwritten_rec], ["Extract_Caption", " Extract_Digital_text", " Extract_HandWritten_text"]) |
|
demo.launch(debug=True) |
|
|