|
import pdb |
|
from pathlib import Path |
|
import sys |
|
import os |
|
import onnxruntime as ort |
|
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() |
|
sys.path.insert(0, str(PROJECT_ROOT)) |
|
from parsing_api import onnx_inference |
|
import torch |
|
|
|
|
|
class Parsing: |
|
def __init__(self, gpu_id: int): |
|
self.gpu_id = gpu_id |
|
torch.cuda.set_device(gpu_id) |
|
session_options = ort.SessionOptions() |
|
session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL |
|
session_options.add_session_config_entry('gpu_id', str(gpu_id)) |
|
self.session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'checkpoints/humanparsing/parsing_atr.onnx'), |
|
sess_options=session_options, providers=['CPUExecutionProvider']) |
|
self.lip_session = ort.InferenceSession(os.path.join(Path(__file__).absolute().parents[2].absolute(), 'checkpoints/humanparsing/parsing_lip.onnx'), |
|
sess_options=session_options, providers=['CPUExecutionProvider']) |
|
|
|
|
|
def __call__(self, input_image): |
|
torch.cuda.set_device(self.gpu_id) |
|
parsed_image, face_mask = onnx_inference(self.session, self.lip_session, input_image) |
|
return parsed_image, face_mask |
|
|