|
import pdb |
|
|
|
import config |
|
from pathlib import Path |
|
import sys |
|
|
|
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() |
|
sys.path.insert(0, str(PROJECT_ROOT)) |
|
import os |
|
|
|
import cv2 |
|
import einops |
|
import numpy as np |
|
import random |
|
import time |
|
import json |
|
|
|
|
|
from preprocess.openpose.annotator.util import resize_image, HWC3 |
|
from preprocess.openpose.annotator.openpose import OpenposeDetector |
|
|
|
import argparse |
|
from PIL import Image |
|
import torch |
|
import pdb |
|
|
|
|
|
|
|
class OpenPose: |
|
def __init__(self, gpu_id: int): |
|
|
|
|
|
self.preprocessor = OpenposeDetector() |
|
|
|
def __call__(self, input_image, resolution=384): |
|
|
|
if isinstance(input_image, Image.Image): |
|
input_image = np.asarray(input_image) |
|
elif type(input_image) == str: |
|
input_image = np.asarray(Image.open(input_image)) |
|
else: |
|
raise ValueError |
|
with torch.no_grad(): |
|
input_image = HWC3(input_image) |
|
input_image = resize_image(input_image, resolution) |
|
H, W, C = input_image.shape |
|
assert (H == 512 and W == 384), 'Incorrect input image shape' |
|
pose, detected_map = self.preprocessor(input_image, hand_and_face=False) |
|
|
|
candidate = pose['bodies']['candidate'] |
|
subset = pose['bodies']['subset'][0][:18] |
|
for i in range(18): |
|
if subset[i] == -1: |
|
candidate.insert(i, [0, 0]) |
|
for j in range(i, 18): |
|
if(subset[j]) != -1: |
|
subset[j] += 1 |
|
elif subset[i] != i: |
|
candidate.pop(i) |
|
for j in range(i, 18): |
|
if(subset[j]) != -1: |
|
subset[j] -= 1 |
|
|
|
candidate = candidate[:18] |
|
|
|
for i in range(18): |
|
candidate[i][0] *= 384 |
|
candidate[i][1] *= 512 |
|
|
|
keypoints = {"pose_keypoints_2d": candidate} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return keypoints |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
model = OpenPose() |
|
model('./images/model.jpg') |
|
|