Spaces:
Runtime error
Runtime error
import json | |
import gradio as gr | |
# import openai | |
import os | |
import sys | |
import traceback | |
import requests | |
# import markdown | |
my_api_key = "" # 在这里输入你的 API 密钥 | |
initial_prompt = "You are a helpful assistant." | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
if my_api_key == "": | |
my_api_key = os.environ.get('my_api_key') | |
if my_api_key == "empty": | |
print("Please give a api key!") | |
sys.exit(1) | |
def parse_text(text): | |
lines = text.split("\n") | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="{items[-1]}">' | |
else: | |
lines[i] = f'</code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("&", "&") | |
line = line.replace("\"", """) | |
line = line.replace("\'", "'") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
lines[i] = '<br/>'+line | |
return "".join(lines) | |
def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False): # repetition_penalty, top_k | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}" | |
} | |
chat_counter = len(history) // 2 | |
print(f"chat_counter - {chat_counter}") | |
messages = [compose_system(system_prompt)] | |
if chat_counter: | |
for data in chatbot: | |
temp1 = {} | |
temp1["role"] = "user" | |
temp1["content"] = data[0] | |
temp2 = {} | |
temp2["role"] = "assistant" | |
temp2["content"] = data[1] | |
if temp1["content"] != "": | |
messages.append(temp1) | |
messages.append(temp2) | |
else: | |
messages[-1]['content'] = temp2['content'] | |
if retry and chat_counter: | |
messages.pop() | |
elif summary and chat_counter: | |
messages.append(compose_user( | |
"请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。")) | |
history = ["我们刚刚聊了什么?"] | |
else: | |
temp3 = {} | |
temp3["role"] = "user" | |
temp3["content"] = inputs | |
messages.append(temp3) | |
chat_counter += 1 | |
# messages | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": messages, # [{"role": "user", "content": f"{inputs}"}], | |
"temperature": temperature, # 1.0, | |
"top_p": top_p, # 1.0, | |
"n": 1, | |
"stream": True, | |
"presence_penalty": 0, | |
"frequency_penalty": 0, | |
} | |
if not summary: | |
history.append(inputs) | |
print(f"payload is - {payload}") | |
# make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
response = requests.post(API_URL, headers=headers, | |
json=payload, stream=True) | |
#response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
token_counter = 0 | |
partial_words = "" | |
counter = 0 | |
chatbot.append((history[-1], "")) | |
for chunk in response.iter_lines(): | |
if counter == 0: | |
counter += 1 | |
continue | |
counter += 1 | |
# check whether each line is non-empty | |
if chunk: | |
# decode each line as response data is in bytes | |
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: | |
break | |
#print(json.loads(chunk.decode()[6:])['choices'][0]["delta"] ["content"]) | |
partial_words = partial_words + \ | |
json.loads(chunk.decode()[6:])[ | |
'choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = parse_text(partial_words) | |
chatbot[-1] = (history[-2], history[-1]) | |
# chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list | |
token_counter += 1 | |
# resembles {chatbot: chat, state: history} | |
yield chatbot, history | |
def delete_last_conversation(chatbot, history): | |
if chat_counter > 0: | |
chat_counter -= 1 | |
chatbot.pop() | |
history.pop() | |
history.pop() | |
return chatbot, history | |
def save_chat_history(filepath, system, history, chatbot): | |
if filepath == "": | |
return | |
if not filepath.endswith(".json"): | |
filepath += ".json" | |
json_s = {"system": system, "history": history, "chatbot": chatbot} | |
with open(filepath, "w") as f: | |
json.dump(json_s, f) | |
def load_chat_history(filename): | |
with open(filename, "r") as f: | |
json_s = json.load(f) | |
return filename, json_s["system"], json_s["history"], json_s["chatbot"] | |
def get_history_names(plain=False): | |
# find all json files in the current directory and return their names | |
files = [f for f in os.listdir() if f.endswith(".json")] | |
if plain: | |
return files | |
else: | |
return gr.Dropdown.update(choices=files) | |
def reset_state(): | |
return [], [] | |
def compose_system(system_prompt): | |
return {"role": "system", "content": system_prompt} | |
def compose_user(user_input): | |
return {"role": "user", "content": user_input} | |
def reset_textbox(): | |
return gr.update(value='') | |
with gr.Blocks() as demo: | |
keyTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入你的OpenAI API-key...", | |
value=my_api_key, label="API Key", type="password").style(container=True) | |
chatbot = gr.Chatbot() # .style(color_map=("#1D51EE", "#585A5B")) | |
history = gr.State([]) | |
TRUECOMSTANT = gr.State(True) | |
FALSECONSTANT = gr.State(False) | |
topic = gr.State("未命名对话历史记录") | |
with gr.Row(): | |
with gr.Column(scale=12): | |
txt = gr.Textbox(show_label=False, placeholder="在这里输入").style( | |
container=False) | |
with gr.Column(min_width=50, scale=1): | |
submitBtn = gr.Button("🚀", variant="primary") | |
with gr.Row(): | |
emptyBtn = gr.Button("🧹 新的对话") | |
retryBtn = gr.Button("🔄 重新生成") | |
delLastBtn = gr.Button("🗑️ 删除上条对话") | |
reduceTokenBtn = gr.Button("♻️ 总结对话") | |
systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入System Prompt...", | |
label="System prompt", value=initial_prompt).style(container=True) | |
with gr.Accordion(label="保存/加载对话历史记录(在文本框中输入文件名,点击“保存对话”按钮,历史记录文件会被存储到Python文件旁边)", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(scale=6): | |
saveFileName = gr.Textbox( | |
show_label=True, placeholder=f"在这里输入保存的文件名...", label="设置保存文件名", value="对话历史记录").style(container=True) | |
with gr.Column(scale=1): | |
saveBtn = gr.Button("💾 保存对话") | |
with gr.Row(): | |
with gr.Column(scale=6): | |
uploadDropdown = gr.Dropdown(label="从列表中加载对话", choices=get_history_names(plain=True), multiselect=False) | |
with gr.Column(scale=1): | |
refreshBtn = gr.Button("🔄 刷新") | |
uploadBtn = gr.Button("📂 读取对话") | |
#inputs, top_p, temperature, top_k, repetition_penalty | |
with gr.Accordion("参数", open=False): | |
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, | |
interactive=True, label="Top-p (nucleus sampling)",) | |
temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, | |
step=0.1, interactive=True, label="Temperature",) | |
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",) | |
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", ) | |
txt.submit(predict, [txt, top_p, temperature, keyTxt, | |
chatbot, history, systemPromptTxt], [chatbot, history]) | |
txt.submit(reset_textbox, [], [txt]) | |
submitBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, | |
history, systemPromptTxt], [chatbot, history], show_progress=True) | |
submitBtn.click(reset_textbox, [], [txt]) | |
emptyBtn.click(reset_state, outputs=[chatbot, history]) | |
retryBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history, | |
systemPromptTxt, TRUECOMSTANT], [chatbot, history], show_progress=True) | |
delLastBtn.click(delete_last_conversation, [chatbot, history], [ | |
chatbot, history], show_progress=True) | |
reduceTokenBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history, | |
systemPromptTxt, FALSECONSTANT, TRUECOMSTANT], [chatbot, history], show_progress=True) | |
saveBtn.click(save_chat_history, [ | |
saveFileName, systemPromptTxt, history, chatbot], None, show_progress=True) | |
saveBtn.click(get_history_names, None, [uploadDropdown]) | |
refreshBtn.click(get_history_names, None, [uploadDropdown]) | |
uploadBtn.click(load_chat_history, [uploadDropdown], [saveFileName, systemPromptTxt, history, chatbot], show_progress=True) | |
demo.queue().launch(debug=True) |