Spaces:
Running
Running
from openai import OpenAI | |
import streamlit as st | |
from langchain_openai import ChatOpenAI | |
from tools import sentiment_analysis_util | |
import numpy as np | |
import pandas as pd | |
from dotenv import load_dotenv | |
import os | |
st.set_page_config(page_title="LangChain Agent", layout="wide") | |
load_dotenv() | |
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] | |
from langchain_core.runnables import RunnableConfig | |
st.title("💬 News Search") | |
st.image('el_pic.png') | |
#@st.cache_resource | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [{"role":"system", "content":"""💬 How can I help you?"""}] | |
# Display all previous messages | |
for msg in st.session_state.messages: | |
st.chat_message(msg["role"]).write(msg["content"]) | |
#initialize_session_state() | |
sideb=st.sidebar | |
with st.sidebar: | |
prompt=st.text_input("Enter topic for sentiment analysis: ") | |
check1=sideb.button(f"analyze {prompt}") | |
if check1: | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# ========================== Sentiment analysis | |
#Perform sentiment analysis on the cryptocurrency news & predict dominant sentiment along with plotting the sentiment breakdown chart | |
# Downloading from reddit | |
# Downloading from alpaca | |
if len(prompt.split(' '))<3: | |
st.write('I am analyzing Google News ...') | |
news_articles = sentiment_analysis_util.fetch_news(str(prompt)) | |
st.write('Now, I am analyzing Reddit ...') | |
reddit_news_articles=sentiment_analysis_util.fetch_reddit_news(prompt) | |
# Fetch news articles | |
tavily_news_articles = sentiment_analysis_util.fetch_tavily_news(prompt) | |
# Handle empty results | |
if not tavily_news_articles: | |
print("No news articles found. Try adjusting your search terms.") | |
else: | |
# Process the articles | |
for url in tavily_news_articles: | |
try: | |
# Your existing article processing code | |
st.write(f"Article URL: {url}") | |
# ... rest of your processing ... | |
except Exception as e: | |
st.error(f"Error processing article {url}: {e}") | |
continue | |
analysis_results = [] | |
#Perform sentiment analysis for each product review | |
if len(prompt.split(' '))<3: | |
for article in news_articles: | |
if prompt.lower()[0:6] in article['News_Article'].lower(): | |
sentiment_analysis_result = sentiment_analysis_util.analyze_sentiment(article['News_Article']) | |
# Display sentiment analysis results | |
#print(f'News Article: {sentiment_analysis_result["News_Article"]} : Sentiment: {sentiment_analysis_result["Sentiment"]}', '\n') | |
result = { | |
'News_Article': sentiment_analysis_result["News_Article"], | |
'Sentiment': sentiment_analysis_result["Sentiment"][0]['label'], | |
'Index': sentiment_analysis_result["Sentiment"][0]['score'], | |
'URL': article['URL'] | |
} | |
analysis_results.append(result) | |
articles_url=[] | |
for article in reddit_news_articles: | |
if prompt.lower()[0:6] in article.lower(): | |
sentiment_analysis_result_reddit = sentiment_analysis_util.analyze_sentiment(article) | |
# Display sentiment analysis results | |
#print(f'News Article: {sentiment_analysis_result_reddit["News_Article"]} : Sentiment: {sentiment_analysis_result_reddit["Sentiment"]}', '\n') | |
result = { | |
'News_Article': sentiment_analysis_result_reddit["News_Article"], | |
'Index':np.round(sentiment_analysis_result_reddit["Sentiment"][0]['score'],2) | |
} | |
analysis_results.append(np.append(result,np.append(article.split('URL:')[-1:], ((article.split('Date: ')[-1:])[0][0:10])))) | |
for article in tavily_news_articles: | |
if prompt.lower()[0:5] in article: | |
sentiment_analysis_result_tavily = sentiment_analysis_util.analyze_sentiment(article) | |
# Display sentiment analysis results | |
#print(f'News Article: {sentiment_analysis_result_tavily["News_Article"]} : Sentiment: {sentiment_analysis_result_tavily["Sentiment"]}', '\n') | |
result = { | |
'News_Article': sentiment_analysis_result_tavily["News_Article"], | |
'Index':np.round(sentiment_analysis_result_tavily["Sentiment"][0]['score'],2) | |
} | |
analysis_results.append(np.append(result,np.append(article.split('URL:')[-1:], ((article.split('Date: ')[-1:])[0][0:10])))) | |
print('is_present tavily 2',analysis_results) | |
# #LinkedIn and Twitter previously downloaded from phantombuster | |
# st.write('Teď analyzuji data z LinkedInu a Twitteru ...') | |
# df=pd.read_csv('./data/LinkedIn_transurban_phantombuster.csv',index_col='postTimestamp',parse_dates=True,infer_datetime_format=True) | |
# df=df.sort_index(ascending=False) | |
# df=df.dropna() | |
# from tools import sentiment_analysis_util | |
# for linkedin_news in df['postContent']: | |
# print(linkedin_news) | |
# news_article={ | |
# 'News_Article': linkedin_news, | |
# 'URL': df.loc[df['postContent']==linkedin_news]['postUrl'][0], | |
# 'date': df.loc[df['postContent']==linkedin_news].index[0]} | |
# if prompt.lower()[0:6] in linkedin_news.lower(): | |
# sentiment_analysis_result = sentiment_analysis_util.analyze_sentiment(news_article) | |
# news_article["Sentiment"]=sentiment_analysis_result["Sentiment"][0]['label'] | |
# news_article["Index"]=sentiment_analysis_result["Sentiment"][0]['score'] | |
# analysis_results.append(news_article) | |
# count=0 | |
# df=pd.read_csv('./data/Twitter_transurban_phantombuster.csv',index_col='tweetDate',parse_dates=True,infer_datetime_format=True) | |
# df=df.sort_index(ascending=False) | |
# df=df.dropna() | |
# from tools import sentiment_analysis_util | |
# for twitter_news in df['text']: | |
# print(twitter_news) | |
# news_article={ | |
# 'News_Article': twitter_news, | |
# 'URL': df['tweetLink'][count], | |
# 'date': df.iloc[count:count+1,:].index[0]} | |
# if prompt.lower()[0:6] in twitter_news.lower(): | |
# sentiment_analysis_result = sentiment_analysis_util.analyze_sentiment(news_article) | |
# news_article["Sentiment"]=sentiment_analysis_result["Sentiment"][0]['label'] | |
# news_article["Index"]=sentiment_analysis_result["Sentiment"][0]['score'] | |
# analysis_results.append(news_article) | |
# count+=1 | |
#Generate summarized message rationalize dominant sentiment | |
#st.write(analysis_results) | |
summary = sentiment_analysis_util.generate_summary_of_sentiment(analysis_results) #, dominant_sentiment) | |
st.chat_message("assistant").write((summary)) | |
st.session_state.messages.append({"role": "assistant", "content": summary}) | |
#answers=np.append(res["messages"][-1].content,summary) | |
client = ChatOpenAI(model="gpt-4o",api_key=OPENAI_API_KEY) | |
if "openai_model" not in st.session_state: | |
st.session_state["openai_model"] = "gpt-4o" | |
if prompt := st.chat_input("Any other questions? "): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
stream = client.chat.completions.create( | |
model=st.session_state["openai_model"], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
stream=True, | |
) | |
response = st.write_stream(stream) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |