|
import streamlit as st |
|
import cv2 |
|
from PIL import Image |
|
import os |
|
import numpy as np |
|
import tensorflow as tf |
|
from object_detection.utils import label_map_util |
|
from object_detection.utils import visualization_utils as viz_utils |
|
from object_detection.builders import model_builder |
|
from object_detection.utils import config_util |
|
|
|
|
|
CUSTOM_MODEL_NAME = 'my_ssd_mobnet' |
|
paths = { |
|
'CHECKPOINT_PATH': os.path.join('Tensorflow', 'workspace', 'models', CUSTOM_MODEL_NAME), |
|
'LABELMAP': os.path.join('Tensorflow', 'workspace', 'annotations', 'label_map.pbtxt') |
|
} |
|
|
|
configs = config_util.get_configs_from_pipeline_file(os.path.join(paths['CHECKPOINT_PATH'], 'pipeline.config')) |
|
detection_model = model_builder.build(model_config=configs['model'], is_training=False) |
|
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model) |
|
ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-3')).expect_partial() |
|
category_index = label_map_util.create_category_index_from_labelmap(paths['LABELMAP']) |
|
|
|
|
|
@tf.function |
|
def detect_fn(image): |
|
image, shapes = detection_model.preprocess(image) |
|
prediction_dict = detection_model.predict(image, shapes) |
|
detections = detection_model.postprocess(prediction_dict, shapes) |
|
return detections |
|
|
|
|
|
def main(): |
|
st.title('Furniture Detection') |
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
image = np.array(Image.open(uploaded_file)) |
|
st.image(image, caption='Uploaded Image', use_column_width=True) |
|
st.write("") |
|
st.write("Detection In Process...") |
|
|
|
|
|
input_tensor = tf.convert_to_tensor(np.expand_dims(image, 0), dtype=tf.float32) |
|
detections = detect_fn(input_tensor) |
|
|
|
num_detections = int(detections.pop('num_detections')) |
|
detections = {key: value[0, :num_detections].numpy() for key, value in detections.items()} |
|
detections['num_detections'] = num_detections |
|
detections['detection_classes'] = detections['detection_classes'].astype(np.int64) |
|
|
|
label_id_offset = 1 |
|
image_np_with_detections = image.copy() |
|
|
|
viz_utils.visualize_boxes_and_labels_on_image_array( |
|
image_np_with_detections, |
|
detections['detection_boxes'], |
|
detections['detection_classes'] + label_id_offset, |
|
detections['detection_scores'], |
|
category_index, |
|
use_normalized_coordinates=True, |
|
max_boxes_to_draw=5, |
|
min_score_thresh=.3, |
|
agnostic_mode=False |
|
) |
|
|
|
st.image(image_np_with_detections, caption='Detected Teeth', use_column_width=True) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|