Spaces:
Build error
Build error
Upload PROJECT TOXIC COMMENT ANALYZER.ipynb
Browse files- PROJECT TOXIC COMMENT ANALYZER.ipynb +1486 -0
PROJECT TOXIC COMMENT ANALYZER.ipynb
ADDED
@@ -0,0 +1,1486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "a9a3a647",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"WARNING:tensorflow:From C:\\Users\\karti\\anaconda3\\Lib\\site-packages\\keras\\src\\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.\n",
|
14 |
+
"\n"
|
15 |
+
]
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"source": [
|
19 |
+
"import os\n",
|
20 |
+
"import pandas as pd\n",
|
21 |
+
"import tensorflow as tf\n",
|
22 |
+
"import numpy as np"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 167,
|
28 |
+
"id": "52960768",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"data": {
|
33 |
+
"text/html": [
|
34 |
+
"<div>\n",
|
35 |
+
"<style scoped>\n",
|
36 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
37 |
+
" vertical-align: middle;\n",
|
38 |
+
" }\n",
|
39 |
+
"\n",
|
40 |
+
" .dataframe tbody tr th {\n",
|
41 |
+
" vertical-align: top;\n",
|
42 |
+
" }\n",
|
43 |
+
"\n",
|
44 |
+
" .dataframe thead th {\n",
|
45 |
+
" text-align: right;\n",
|
46 |
+
" }\n",
|
47 |
+
"</style>\n",
|
48 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
49 |
+
" <thead>\n",
|
50 |
+
" <tr style=\"text-align: right;\">\n",
|
51 |
+
" <th></th>\n",
|
52 |
+
" <th>id</th>\n",
|
53 |
+
" <th>comment_text</th>\n",
|
54 |
+
" <th>toxic</th>\n",
|
55 |
+
" <th>severe_toxic</th>\n",
|
56 |
+
" <th>obscene</th>\n",
|
57 |
+
" <th>threat</th>\n",
|
58 |
+
" <th>insult</th>\n",
|
59 |
+
" <th>identity_hate</th>\n",
|
60 |
+
" </tr>\n",
|
61 |
+
" </thead>\n",
|
62 |
+
" <tbody>\n",
|
63 |
+
" <tr>\n",
|
64 |
+
" <th>0</th>\n",
|
65 |
+
" <td>0000997932d777bf</td>\n",
|
66 |
+
" <td>Explanation\\nWhy the edits made under my usern...</td>\n",
|
67 |
+
" <td>0</td>\n",
|
68 |
+
" <td>0</td>\n",
|
69 |
+
" <td>0</td>\n",
|
70 |
+
" <td>0</td>\n",
|
71 |
+
" <td>0</td>\n",
|
72 |
+
" <td>0</td>\n",
|
73 |
+
" </tr>\n",
|
74 |
+
" <tr>\n",
|
75 |
+
" <th>1</th>\n",
|
76 |
+
" <td>000103f0d9cfb60f</td>\n",
|
77 |
+
" <td>D'aww! He matches this background colour I'm s...</td>\n",
|
78 |
+
" <td>0</td>\n",
|
79 |
+
" <td>0</td>\n",
|
80 |
+
" <td>0</td>\n",
|
81 |
+
" <td>0</td>\n",
|
82 |
+
" <td>0</td>\n",
|
83 |
+
" <td>0</td>\n",
|
84 |
+
" </tr>\n",
|
85 |
+
" <tr>\n",
|
86 |
+
" <th>2</th>\n",
|
87 |
+
" <td>000113f07ec002fd</td>\n",
|
88 |
+
" <td>Hey man, I'm really not trying to edit war. It...</td>\n",
|
89 |
+
" <td>0</td>\n",
|
90 |
+
" <td>0</td>\n",
|
91 |
+
" <td>0</td>\n",
|
92 |
+
" <td>0</td>\n",
|
93 |
+
" <td>0</td>\n",
|
94 |
+
" <td>0</td>\n",
|
95 |
+
" </tr>\n",
|
96 |
+
" <tr>\n",
|
97 |
+
" <th>3</th>\n",
|
98 |
+
" <td>0001b41b1c6bb37e</td>\n",
|
99 |
+
" <td>\"\\nMore\\nI can't make any real suggestions on ...</td>\n",
|
100 |
+
" <td>0</td>\n",
|
101 |
+
" <td>0</td>\n",
|
102 |
+
" <td>0</td>\n",
|
103 |
+
" <td>0</td>\n",
|
104 |
+
" <td>0</td>\n",
|
105 |
+
" <td>0</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" <tr>\n",
|
108 |
+
" <th>4</th>\n",
|
109 |
+
" <td>0001d958c54c6e35</td>\n",
|
110 |
+
" <td>You, sir, are my hero. Any chance you remember...</td>\n",
|
111 |
+
" <td>0</td>\n",
|
112 |
+
" <td>0</td>\n",
|
113 |
+
" <td>0</td>\n",
|
114 |
+
" <td>0</td>\n",
|
115 |
+
" <td>0</td>\n",
|
116 |
+
" <td>0</td>\n",
|
117 |
+
" </tr>\n",
|
118 |
+
" </tbody>\n",
|
119 |
+
"</table>\n",
|
120 |
+
"</div>"
|
121 |
+
],
|
122 |
+
"text/plain": [
|
123 |
+
" id comment_text toxic \\\n",
|
124 |
+
"0 0000997932d777bf Explanation\\nWhy the edits made under my usern... 0 \n",
|
125 |
+
"1 000103f0d9cfb60f D'aww! He matches this background colour I'm s... 0 \n",
|
126 |
+
"2 000113f07ec002fd Hey man, I'm really not trying to edit war. It... 0 \n",
|
127 |
+
"3 0001b41b1c6bb37e \"\\nMore\\nI can't make any real suggestions on ... 0 \n",
|
128 |
+
"4 0001d958c54c6e35 You, sir, are my hero. Any chance you remember... 0 \n",
|
129 |
+
"\n",
|
130 |
+
" severe_toxic obscene threat insult identity_hate \n",
|
131 |
+
"0 0 0 0 0 0 \n",
|
132 |
+
"1 0 0 0 0 0 \n",
|
133 |
+
"2 0 0 0 0 0 \n",
|
134 |
+
"3 0 0 0 0 0 \n",
|
135 |
+
"4 0 0 0 0 0 "
|
136 |
+
]
|
137 |
+
},
|
138 |
+
"execution_count": 167,
|
139 |
+
"metadata": {},
|
140 |
+
"output_type": "execute_result"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"name": "stdout",
|
144 |
+
"output_type": "stream",
|
145 |
+
"text": [
|
146 |
+
"1/1 [==============================] - 0s 327ms/step\n"
|
147 |
+
]
|
148 |
+
}
|
149 |
+
],
|
150 |
+
"source": [
|
151 |
+
"data=pd.read_csv('train.csv')\n",
|
152 |
+
"data.head(5)"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 4,
|
158 |
+
"id": "4bb87073",
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [
|
161 |
+
{
|
162 |
+
"data": {
|
163 |
+
"text/plain": [
|
164 |
+
"\"Sorry if the word 'nonsense' was offensive to you. Anyway, I'm not intending to write anything in the article(wow they would jump on me for vandalism), I'm merely requesting that it be more encyclopedic so one can use it for school as a reference. I have been to the selective breeding page but it's almost a stub. It points to 'animal breeding' which is a short messy article that gives you no info. There must be someone around with expertise in eugenics? 93.161.107.169\""
|
165 |
+
]
|
166 |
+
},
|
167 |
+
"execution_count": 4,
|
168 |
+
"metadata": {},
|
169 |
+
"output_type": "execute_result"
|
170 |
+
}
|
171 |
+
],
|
172 |
+
"source": [
|
173 |
+
"data['comment_text'][8]"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 5,
|
179 |
+
"id": "c6e7509b",
|
180 |
+
"metadata": {},
|
181 |
+
"outputs": [
|
182 |
+
{
|
183 |
+
"data": {
|
184 |
+
"text/plain": [
|
185 |
+
"Index(['id', 'comment_text', 'toxic', 'severe_toxic', 'obscene', 'threat',\n",
|
186 |
+
" 'insult', 'identity_hate'],\n",
|
187 |
+
" dtype='object')"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
"execution_count": 5,
|
191 |
+
"metadata": {},
|
192 |
+
"output_type": "execute_result"
|
193 |
+
}
|
194 |
+
],
|
195 |
+
"source": [
|
196 |
+
" data.columns"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": 6,
|
202 |
+
"id": "2802af7a",
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"data": {
|
207 |
+
"text/plain": [
|
208 |
+
"(159571, 8)"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
"execution_count": 6,
|
212 |
+
"metadata": {},
|
213 |
+
"output_type": "execute_result"
|
214 |
+
}
|
215 |
+
],
|
216 |
+
"source": [
|
217 |
+
"data.shape"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 7,
|
223 |
+
"id": "97449fcb",
|
224 |
+
"metadata": {},
|
225 |
+
"outputs": [
|
226 |
+
{
|
227 |
+
"data": {
|
228 |
+
"text/plain": [
|
229 |
+
"toxic 0\n",
|
230 |
+
"severe_toxic 0\n",
|
231 |
+
"obscene 0\n",
|
232 |
+
"threat 0\n",
|
233 |
+
"insult 0\n",
|
234 |
+
"identity_hate 0\n",
|
235 |
+
"Name: 9, dtype: int64"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
"execution_count": 7,
|
239 |
+
"metadata": {},
|
240 |
+
"output_type": "execute_result"
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"source": [
|
244 |
+
"data[data.columns[2:]].iloc[9]"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": null,
|
250 |
+
"id": "8844c1b7",
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [],
|
253 |
+
"source": []
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "markdown",
|
257 |
+
"id": "bbd67b78",
|
258 |
+
"metadata": {},
|
259 |
+
"source": [
|
260 |
+
"## Preprocessing"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": 8,
|
266 |
+
"id": "6d23f922",
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [],
|
269 |
+
"source": [
|
270 |
+
"from tensorflow.keras.layers import TextVectorization"
|
271 |
+
]
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"cell_type": "code",
|
275 |
+
"execution_count": 9,
|
276 |
+
"id": "a3d9e014",
|
277 |
+
"metadata": {},
|
278 |
+
"outputs": [],
|
279 |
+
"source": [
|
280 |
+
"x=data['comment_text']\n",
|
281 |
+
"y=data[data.columns[2:]].values"
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"cell_type": "code",
|
286 |
+
"execution_count": 10,
|
287 |
+
"id": "eb1eefc0",
|
288 |
+
"metadata": {},
|
289 |
+
"outputs": [
|
290 |
+
{
|
291 |
+
"data": {
|
292 |
+
"text/plain": [
|
293 |
+
"0 Explanation\\nWhy the edits made under my usern...\n",
|
294 |
+
"1 D'aww! He matches this background colour I'm s...\n",
|
295 |
+
"2 Hey man, I'm really not trying to edit war. It...\n",
|
296 |
+
"3 \"\\nMore\\nI can't make any real suggestions on ...\n",
|
297 |
+
"4 You, sir, are my hero. Any chance you remember...\n",
|
298 |
+
" ... \n",
|
299 |
+
"159566 \":::::And for the second time of asking, when ...\n",
|
300 |
+
"159567 You should be ashamed of yourself \\n\\nThat is ...\n",
|
301 |
+
"159568 Spitzer \\n\\nUmm, theres no actual article for ...\n",
|
302 |
+
"159569 And it looks like it was actually you who put ...\n",
|
303 |
+
"159570 \"\\nAnd ... I really don't think you understand...\n",
|
304 |
+
"Name: comment_text, Length: 159571, dtype: object"
|
305 |
+
]
|
306 |
+
},
|
307 |
+
"execution_count": 10,
|
308 |
+
"metadata": {},
|
309 |
+
"output_type": "execute_result"
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"source": [
|
313 |
+
"x"
|
314 |
+
]
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"cell_type": "code",
|
318 |
+
"execution_count": 11,
|
319 |
+
"id": "414f8a4c",
|
320 |
+
"metadata": {},
|
321 |
+
"outputs": [
|
322 |
+
{
|
323 |
+
"data": {
|
324 |
+
"text/plain": [
|
325 |
+
"array([[0, 0, 0, 0, 0, 0],\n",
|
326 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
327 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
328 |
+
" ...,\n",
|
329 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
330 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
331 |
+
" [0, 0, 0, 0, 0, 0]], dtype=int64)"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
"execution_count": 11,
|
335 |
+
"metadata": {},
|
336 |
+
"output_type": "execute_result"
|
337 |
+
}
|
338 |
+
],
|
339 |
+
"source": [
|
340 |
+
"y"
|
341 |
+
]
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"cell_type": "code",
|
345 |
+
"execution_count": 12,
|
346 |
+
"id": "70ec2244",
|
347 |
+
"metadata": {},
|
348 |
+
"outputs": [],
|
349 |
+
"source": [
|
350 |
+
"max_features=200000"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": 13,
|
356 |
+
"id": "b6a83b69",
|
357 |
+
"metadata": {},
|
358 |
+
"outputs": [
|
359 |
+
{
|
360 |
+
"name": "stdout",
|
361 |
+
"output_type": "stream",
|
362 |
+
"text": [
|
363 |
+
"WARNING:tensorflow:From C:\\Users\\karti\\anaconda3\\Lib\\site-packages\\keras\\src\\backend.py:873: The name tf.get_default_graph is deprecated. Please use tf.compat.v1.get_default_graph instead.\n",
|
364 |
+
"\n"
|
365 |
+
]
|
366 |
+
}
|
367 |
+
],
|
368 |
+
"source": [
|
369 |
+
"vectorizer=TextVectorization(max_tokens=max_features,\n",
|
370 |
+
" output_sequence_length=1800,\n",
|
371 |
+
" output_mode='int')"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": 14,
|
377 |
+
"id": "ba246221",
|
378 |
+
"metadata": {},
|
379 |
+
"outputs": [
|
380 |
+
{
|
381 |
+
"data": {
|
382 |
+
"text/plain": [
|
383 |
+
"['', '[UNK]']"
|
384 |
+
]
|
385 |
+
},
|
386 |
+
"execution_count": 14,
|
387 |
+
"metadata": {},
|
388 |
+
"output_type": "execute_result"
|
389 |
+
}
|
390 |
+
],
|
391 |
+
"source": [
|
392 |
+
"vectorizer.get_vocabulary()"
|
393 |
+
]
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"cell_type": "code",
|
397 |
+
"execution_count": 15,
|
398 |
+
"id": "9648914d",
|
399 |
+
"metadata": {},
|
400 |
+
"outputs": [
|
401 |
+
{
|
402 |
+
"name": "stdout",
|
403 |
+
"output_type": "stream",
|
404 |
+
"text": [
|
405 |
+
"WARNING:tensorflow:From C:\\Users\\karti\\anaconda3\\Lib\\site-packages\\keras\\src\\utils\\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.\n",
|
406 |
+
"\n"
|
407 |
+
]
|
408 |
+
}
|
409 |
+
],
|
410 |
+
"source": [
|
411 |
+
"vectorizer.adapt(x.values)"
|
412 |
+
]
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"cell_type": "code",
|
416 |
+
"execution_count": 16,
|
417 |
+
"id": "75b035a9",
|
418 |
+
"metadata": {},
|
419 |
+
"outputs": [
|
420 |
+
{
|
421 |
+
"data": {
|
422 |
+
"text/plain": [
|
423 |
+
"<tf.Tensor: shape=(5,), dtype=int64, numpy=array([ 19, 7, 3666, 2891, 338], dtype=int64)>"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
"execution_count": 16,
|
427 |
+
"metadata": {},
|
428 |
+
"output_type": "execute_result"
|
429 |
+
}
|
430 |
+
],
|
431 |
+
"source": [
|
432 |
+
"vectorizer(\"have you watched breaking bad\")[:5]"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": 17,
|
438 |
+
"id": "8854984d",
|
439 |
+
"metadata": {},
|
440 |
+
"outputs": [],
|
441 |
+
"source": [
|
442 |
+
"vectorized_text=vectorizer(x.values)"
|
443 |
+
]
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"cell_type": "code",
|
447 |
+
"execution_count": 18,
|
448 |
+
"id": "9fb407a3",
|
449 |
+
"metadata": {},
|
450 |
+
"outputs": [
|
451 |
+
{
|
452 |
+
"data": {
|
453 |
+
"text/plain": [
|
454 |
+
"<tf.Tensor: shape=(159571, 1800), dtype=int64, numpy=\n",
|
455 |
+
"array([[ 645, 76, 2, ..., 0, 0, 0],\n",
|
456 |
+
" [ 1, 54, 2489, ..., 0, 0, 0],\n",
|
457 |
+
" [ 425, 441, 70, ..., 0, 0, 0],\n",
|
458 |
+
" ...,\n",
|
459 |
+
" [32445, 7392, 383, ..., 0, 0, 0],\n",
|
460 |
+
" [ 5, 12, 534, ..., 0, 0, 0],\n",
|
461 |
+
" [ 5, 8, 130, ..., 0, 0, 0]], dtype=int64)>"
|
462 |
+
]
|
463 |
+
},
|
464 |
+
"execution_count": 18,
|
465 |
+
"metadata": {},
|
466 |
+
"output_type": "execute_result"
|
467 |
+
}
|
468 |
+
],
|
469 |
+
"source": [
|
470 |
+
"vectorized_text"
|
471 |
+
]
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"cell_type": "code",
|
475 |
+
"execution_count": 19,
|
476 |
+
"id": "0aa74efc",
|
477 |
+
"metadata": {},
|
478 |
+
"outputs": [],
|
479 |
+
"source": [
|
480 |
+
"dataset=tf.data.Dataset.from_tensor_slices((vectorized_text, y))\n",
|
481 |
+
"dataset=dataset.cache()\n",
|
482 |
+
"dataset=dataset.shuffle(160000)\n",
|
483 |
+
"dataset=dataset.batch(16)\n",
|
484 |
+
"dataset=dataset.prefetch(8)"
|
485 |
+
]
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"cell_type": "code",
|
489 |
+
"execution_count": 20,
|
490 |
+
"id": "ff040bf8",
|
491 |
+
"metadata": {},
|
492 |
+
"outputs": [
|
493 |
+
{
|
494 |
+
"data": {
|
495 |
+
"text/plain": [
|
496 |
+
"9973.1875"
|
497 |
+
]
|
498 |
+
},
|
499 |
+
"execution_count": 20,
|
500 |
+
"metadata": {},
|
501 |
+
"output_type": "execute_result"
|
502 |
+
}
|
503 |
+
],
|
504 |
+
"source": [
|
505 |
+
"159571/16"
|
506 |
+
]
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"cell_type": "code",
|
510 |
+
"execution_count": 21,
|
511 |
+
"id": "fd8b18f5",
|
512 |
+
"metadata": {},
|
513 |
+
"outputs": [],
|
514 |
+
"source": [
|
515 |
+
"batch_x, batch_y = dataset.as_numpy_iterator().next()"
|
516 |
+
]
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"cell_type": "code",
|
520 |
+
"execution_count": 22,
|
521 |
+
"id": "d81bb1af",
|
522 |
+
"metadata": {},
|
523 |
+
"outputs": [
|
524 |
+
{
|
525 |
+
"data": {
|
526 |
+
"text/plain": [
|
527 |
+
"(16, 1800)"
|
528 |
+
]
|
529 |
+
},
|
530 |
+
"execution_count": 22,
|
531 |
+
"metadata": {},
|
532 |
+
"output_type": "execute_result"
|
533 |
+
}
|
534 |
+
],
|
535 |
+
"source": [
|
536 |
+
"batch_x.shape"
|
537 |
+
]
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"cell_type": "code",
|
541 |
+
"execution_count": 23,
|
542 |
+
"id": "2cfeca51",
|
543 |
+
"metadata": {},
|
544 |
+
"outputs": [
|
545 |
+
{
|
546 |
+
"data": {
|
547 |
+
"text/plain": [
|
548 |
+
"(16, 6)"
|
549 |
+
]
|
550 |
+
},
|
551 |
+
"execution_count": 23,
|
552 |
+
"metadata": {},
|
553 |
+
"output_type": "execute_result"
|
554 |
+
}
|
555 |
+
],
|
556 |
+
"source": [
|
557 |
+
"batch_y.shape"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"cell_type": "code",
|
562 |
+
"execution_count": 24,
|
563 |
+
"id": "9d8a90ce",
|
564 |
+
"metadata": {},
|
565 |
+
"outputs": [
|
566 |
+
{
|
567 |
+
"data": {
|
568 |
+
"text/plain": [
|
569 |
+
"9974"
|
570 |
+
]
|
571 |
+
},
|
572 |
+
"execution_count": 24,
|
573 |
+
"metadata": {},
|
574 |
+
"output_type": "execute_result"
|
575 |
+
}
|
576 |
+
],
|
577 |
+
"source": [
|
578 |
+
"len(dataset)"
|
579 |
+
]
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"cell_type": "code",
|
583 |
+
"execution_count": 25,
|
584 |
+
"id": "5a111205",
|
585 |
+
"metadata": {},
|
586 |
+
"outputs": [
|
587 |
+
{
|
588 |
+
"data": {
|
589 |
+
"text/plain": [
|
590 |
+
"6981"
|
591 |
+
]
|
592 |
+
},
|
593 |
+
"execution_count": 25,
|
594 |
+
"metadata": {},
|
595 |
+
"output_type": "execute_result"
|
596 |
+
}
|
597 |
+
],
|
598 |
+
"source": [
|
599 |
+
"int(len(dataset)*.7)"
|
600 |
+
]
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"cell_type": "code",
|
604 |
+
"execution_count": 26,
|
605 |
+
"id": "34094209",
|
606 |
+
"metadata": {},
|
607 |
+
"outputs": [],
|
608 |
+
"source": [
|
609 |
+
"train=dataset.take(int(len(dataset)*.7))\n",
|
610 |
+
"val=dataset.skip(int(len(dataset)*.7)).take(int(len(dataset)*.2))\n",
|
611 |
+
"test=dataset.skip(int(len(dataset)*.9)).take(int(len(dataset)*.1))"
|
612 |
+
]
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"cell_type": "code",
|
616 |
+
"execution_count": 27,
|
617 |
+
"id": "2e5369af",
|
618 |
+
"metadata": {},
|
619 |
+
"outputs": [
|
620 |
+
{
|
621 |
+
"data": {
|
622 |
+
"text/plain": [
|
623 |
+
"(6981, 1994, 997)"
|
624 |
+
]
|
625 |
+
},
|
626 |
+
"execution_count": 27,
|
627 |
+
"metadata": {},
|
628 |
+
"output_type": "execute_result"
|
629 |
+
}
|
630 |
+
],
|
631 |
+
"source": [
|
632 |
+
"len(train),len(val),len(test)"
|
633 |
+
]
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"cell_type": "code",
|
637 |
+
"execution_count": 28,
|
638 |
+
"id": "3bb32ca4",
|
639 |
+
"metadata": {},
|
640 |
+
"outputs": [],
|
641 |
+
"source": [
|
642 |
+
"train_generator=train.as_numpy_iterator()"
|
643 |
+
]
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"cell_type": "code",
|
647 |
+
"execution_count": 29,
|
648 |
+
"id": "32f4500b",
|
649 |
+
"metadata": {},
|
650 |
+
"outputs": [
|
651 |
+
{
|
652 |
+
"data": {
|
653 |
+
"text/plain": [
|
654 |
+
"(array([[ 73, 9, 12, ..., 0, 0, 0],\n",
|
655 |
+
" [182862, 88, 7, ..., 0, 0, 0],\n",
|
656 |
+
" [ 4384, 274, 139, ..., 0, 0, 0],\n",
|
657 |
+
" ...,\n",
|
658 |
+
" [ 14, 9, 21, ..., 0, 0, 0],\n",
|
659 |
+
" [ 1188, 399, 123, ..., 0, 0, 0],\n",
|
660 |
+
" [ 46927, 175, 425, ..., 0, 0, 0]], dtype=int64),\n",
|
661 |
+
" array([[0, 0, 0, 0, 0, 0],\n",
|
662 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
663 |
+
" [1, 0, 1, 0, 1, 0],\n",
|
664 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
665 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
666 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
667 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
668 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
669 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
670 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
671 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
672 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
673 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
674 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
675 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
676 |
+
" [0, 0, 0, 0, 0, 0]], dtype=int64))"
|
677 |
+
]
|
678 |
+
},
|
679 |
+
"execution_count": 29,
|
680 |
+
"metadata": {},
|
681 |
+
"output_type": "execute_result"
|
682 |
+
}
|
683 |
+
],
|
684 |
+
"source": [
|
685 |
+
"train_generator.next()"
|
686 |
+
]
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"cell_type": "code",
|
690 |
+
"execution_count": 30,
|
691 |
+
"id": "cbc9a9b2",
|
692 |
+
"metadata": {},
|
693 |
+
"outputs": [],
|
694 |
+
"source": [
|
695 |
+
"from tensorflow.keras.models import Sequential\n",
|
696 |
+
"from tensorflow.keras.layers import LSTM, Dropout, Bidirectional, Dense, Embedding"
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": 31,
|
702 |
+
"id": "6dd6bf3d",
|
703 |
+
"metadata": {},
|
704 |
+
"outputs": [],
|
705 |
+
"source": [
|
706 |
+
"model=Sequential()"
|
707 |
+
]
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"cell_type": "code",
|
711 |
+
"execution_count": 32,
|
712 |
+
"id": "e33e5c86",
|
713 |
+
"metadata": {},
|
714 |
+
"outputs": [],
|
715 |
+
"source": [
|
716 |
+
"model.add(Embedding(max_features+1, 32))\n",
|
717 |
+
"model.add(Bidirectional(LSTM(32, activation='tanh')))\n",
|
718 |
+
"model.add(Dense(128, activation='relu'))\n",
|
719 |
+
"model.add(Dense(256, activation='relu'))\n",
|
720 |
+
"model.add(Dense(128, activation='relu'))\n",
|
721 |
+
"model.add(Dense(6, activation='sigmoid'))"
|
722 |
+
]
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"cell_type": "code",
|
726 |
+
"execution_count": 33,
|
727 |
+
"id": "6821b620",
|
728 |
+
"metadata": {},
|
729 |
+
"outputs": [
|
730 |
+
{
|
731 |
+
"name": "stdout",
|
732 |
+
"output_type": "stream",
|
733 |
+
"text": [
|
734 |
+
"WARNING:tensorflow:From C:\\Users\\karti\\anaconda3\\Lib\\site-packages\\keras\\src\\optimizers\\__init__.py:309: The name tf.train.Optimizer is deprecated. Please use tf.compat.v1.train.Optimizer instead.\n",
|
735 |
+
"\n"
|
736 |
+
]
|
737 |
+
}
|
738 |
+
],
|
739 |
+
"source": [
|
740 |
+
"model.compile(loss='BinaryCrossentropy', optimizer='adam', metrics=['accuracy'])"
|
741 |
+
]
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"cell_type": "code",
|
745 |
+
"execution_count": 34,
|
746 |
+
"id": "f06f01e5",
|
747 |
+
"metadata": {},
|
748 |
+
"outputs": [
|
749 |
+
{
|
750 |
+
"name": "stdout",
|
751 |
+
"output_type": "stream",
|
752 |
+
"text": [
|
753 |
+
"Model: \"sequential\"\n",
|
754 |
+
"_________________________________________________________________\n",
|
755 |
+
" Layer (type) Output Shape Param # \n",
|
756 |
+
"=================================================================\n",
|
757 |
+
" embedding (Embedding) (None, None, 32) 6400032 \n",
|
758 |
+
" \n",
|
759 |
+
" bidirectional (Bidirection (None, 64) 16640 \n",
|
760 |
+
" al) \n",
|
761 |
+
" \n",
|
762 |
+
" dense (Dense) (None, 128) 8320 \n",
|
763 |
+
" \n",
|
764 |
+
" dense_1 (Dense) (None, 256) 33024 \n",
|
765 |
+
" \n",
|
766 |
+
" dense_2 (Dense) (None, 128) 32896 \n",
|
767 |
+
" \n",
|
768 |
+
" dense_3 (Dense) (None, 6) 774 \n",
|
769 |
+
" \n",
|
770 |
+
"=================================================================\n",
|
771 |
+
"Total params: 6491686 (24.76 MB)\n",
|
772 |
+
"Trainable params: 6491686 (24.76 MB)\n",
|
773 |
+
"Non-trainable params: 0 (0.00 Byte)\n",
|
774 |
+
"_________________________________________________________________\n"
|
775 |
+
]
|
776 |
+
}
|
777 |
+
],
|
778 |
+
"source": [
|
779 |
+
"model.summary()"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"cell_type": "code",
|
784 |
+
"execution_count": 36,
|
785 |
+
"id": "376ceed5",
|
786 |
+
"metadata": {},
|
787 |
+
"outputs": [
|
788 |
+
{
|
789 |
+
"name": "stdout",
|
790 |
+
"output_type": "stream",
|
791 |
+
"text": [
|
792 |
+
"Epoch 1/10\n",
|
793 |
+
"WARNING:tensorflow:From C:\\Users\\karti\\anaconda3\\Lib\\site-packages\\keras\\src\\engine\\base_layer_utils.py:384: The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions instead.\n",
|
794 |
+
"\n",
|
795 |
+
"6981/6981 [==============================] - 5071s 726ms/step - loss: 0.0635 - accuracy: 0.9855 - val_loss: 0.0452 - val_accuracy: 0.9946\n",
|
796 |
+
"Epoch 2/10\n",
|
797 |
+
"6981/6981 [==============================] - 4516s 647ms/step - loss: 0.0454 - accuracy: 0.9942 - val_loss: 0.0399 - val_accuracy: 0.9938\n",
|
798 |
+
"Epoch 3/10\n",
|
799 |
+
"6981/6981 [==============================] - 4100s 587ms/step - loss: 0.0407 - accuracy: 0.9889 - val_loss: 0.0373 - val_accuracy: 0.9941\n",
|
800 |
+
"Epoch 4/10\n",
|
801 |
+
"6981/6981 [==============================] - 4111s 589ms/step - loss: 0.0371 - accuracy: 0.9920 - val_loss: 0.0327 - val_accuracy: 0.9948\n",
|
802 |
+
"Epoch 5/10\n",
|
803 |
+
"6981/6981 [==============================] - 4691s 672ms/step - loss: 0.0334 - accuracy: 0.9941 - val_loss: 0.0302 - val_accuracy: 0.9940\n",
|
804 |
+
"Epoch 6/10\n",
|
805 |
+
"6981/6981 [==============================] - 5055s 724ms/step - loss: 0.0311 - accuracy: 0.9841 - val_loss: 0.0275 - val_accuracy: 0.9944\n",
|
806 |
+
"Epoch 7/10\n",
|
807 |
+
"6981/6981 [==============================] - 4508s 646ms/step - loss: 0.0277 - accuracy: 0.9937 - val_loss: 0.0245 - val_accuracy: 0.9930\n",
|
808 |
+
"Epoch 8/10\n",
|
809 |
+
"6981/6981 [==============================] - 4479s 642ms/step - loss: 0.0254 - accuracy: 0.9907 - val_loss: 0.0228 - val_accuracy: 0.9940\n",
|
810 |
+
"Epoch 9/10\n",
|
811 |
+
"6981/6981 [==============================] - 4501s 645ms/step - loss: 0.0228 - accuracy: 0.9892 - val_loss: 0.0193 - val_accuracy: 0.9950\n",
|
812 |
+
"Epoch 10/10\n",
|
813 |
+
"6981/6981 [==============================] - 4523s 648ms/step - loss: 0.0209 - accuracy: 0.9200 - val_loss: 0.0192 - val_accuracy: 0.9943\n"
|
814 |
+
]
|
815 |
+
}
|
816 |
+
],
|
817 |
+
"source": [
|
818 |
+
"history=model.fit(train, epochs=10, validation_data=val)"
|
819 |
+
]
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"cell_type": "code",
|
823 |
+
"execution_count": 37,
|
824 |
+
"id": "cb6501e6",
|
825 |
+
"metadata": {},
|
826 |
+
"outputs": [
|
827 |
+
{
|
828 |
+
"name": "stdout",
|
829 |
+
"output_type": "stream",
|
830 |
+
"text": [
|
831 |
+
"997/997 [==============================] - 158s 146ms/step - loss: 0.0188 - accuracy: 0.9940\n"
|
832 |
+
]
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"data": {
|
836 |
+
"text/plain": [
|
837 |
+
"[0.018809018656611443, 0.9939819574356079]"
|
838 |
+
]
|
839 |
+
},
|
840 |
+
"execution_count": 37,
|
841 |
+
"metadata": {},
|
842 |
+
"output_type": "execute_result"
|
843 |
+
}
|
844 |
+
],
|
845 |
+
"source": [
|
846 |
+
"model.evaluate(test)"
|
847 |
+
]
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"cell_type": "code",
|
851 |
+
"execution_count": 40,
|
852 |
+
"id": "92408998",
|
853 |
+
"metadata": {},
|
854 |
+
"outputs": [],
|
855 |
+
"source": [
|
856 |
+
"x_batch, y_batch = test.as_numpy_iterator().next()"
|
857 |
+
]
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"cell_type": "code",
|
861 |
+
"execution_count": 41,
|
862 |
+
"id": "1c555107",
|
863 |
+
"metadata": {},
|
864 |
+
"outputs": [
|
865 |
+
{
|
866 |
+
"name": "stdout",
|
867 |
+
"output_type": "stream",
|
868 |
+
"text": [
|
869 |
+
"1/1 [==============================] - 2s 2s/step\n"
|
870 |
+
]
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"data": {
|
874 |
+
"text/plain": [
|
875 |
+
"array([[0, 0, 0, 0, 0, 0],\n",
|
876 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
877 |
+
" [1, 0, 0, 0, 0, 0],\n",
|
878 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
879 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
880 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
881 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
882 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
883 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
884 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
885 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
886 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
887 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
888 |
+
" [1, 0, 1, 0, 1, 0],\n",
|
889 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
890 |
+
" [0, 0, 0, 0, 0, 0]])"
|
891 |
+
]
|
892 |
+
},
|
893 |
+
"execution_count": 41,
|
894 |
+
"metadata": {},
|
895 |
+
"output_type": "execute_result"
|
896 |
+
}
|
897 |
+
],
|
898 |
+
"source": [
|
899 |
+
"(model.predict(x_batch) > 0.5).astype(int)"
|
900 |
+
]
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"cell_type": "code",
|
904 |
+
"execution_count": 42,
|
905 |
+
"id": "26a06914",
|
906 |
+
"metadata": {},
|
907 |
+
"outputs": [
|
908 |
+
{
|
909 |
+
"data": {
|
910 |
+
"text/plain": [
|
911 |
+
"array([[0, 0, 0, 0, 0, 0],\n",
|
912 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
913 |
+
" [1, 0, 0, 0, 0, 0],\n",
|
914 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
915 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
916 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
917 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
918 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
919 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
920 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
921 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
922 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
923 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
924 |
+
" [1, 0, 1, 0, 1, 0],\n",
|
925 |
+
" [0, 0, 0, 0, 0, 0],\n",
|
926 |
+
" [0, 0, 0, 0, 0, 0]], dtype=int64)"
|
927 |
+
]
|
928 |
+
},
|
929 |
+
"execution_count": 42,
|
930 |
+
"metadata": {},
|
931 |
+
"output_type": "execute_result"
|
932 |
+
}
|
933 |
+
],
|
934 |
+
"source": [
|
935 |
+
"y_batch"
|
936 |
+
]
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"cell_type": "code",
|
940 |
+
"execution_count": 49,
|
941 |
+
"id": "0ef7c06b",
|
942 |
+
"metadata": {},
|
943 |
+
"outputs": [],
|
944 |
+
"source": [
|
945 |
+
"input_text=vectorizer('I am coming to kill you pal')"
|
946 |
+
]
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"cell_type": "code",
|
950 |
+
"execution_count": 50,
|
951 |
+
"id": "5bb057fa",
|
952 |
+
"metadata": {},
|
953 |
+
"outputs": [
|
954 |
+
{
|
955 |
+
"data": {
|
956 |
+
"text/plain": [
|
957 |
+
"<tf.Tensor: shape=(7,), dtype=int64, numpy=array([ 8, 74, 939, 3, 950, 7, 5762], dtype=int64)>"
|
958 |
+
]
|
959 |
+
},
|
960 |
+
"execution_count": 50,
|
961 |
+
"metadata": {},
|
962 |
+
"output_type": "execute_result"
|
963 |
+
}
|
964 |
+
],
|
965 |
+
"source": [
|
966 |
+
"input_text[:7]"
|
967 |
+
]
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"cell_type": "code",
|
971 |
+
"execution_count": 51,
|
972 |
+
"id": "7ab223e7",
|
973 |
+
"metadata": {},
|
974 |
+
"outputs": [],
|
975 |
+
"source": [
|
976 |
+
"batch=test.as_numpy_iterator().next()"
|
977 |
+
]
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"cell_type": "code",
|
981 |
+
"execution_count": 52,
|
982 |
+
"id": "3986d97b",
|
983 |
+
"metadata": {},
|
984 |
+
"outputs": [
|
985 |
+
{
|
986 |
+
"name": "stdout",
|
987 |
+
"output_type": "stream",
|
988 |
+
"text": [
|
989 |
+
"1/1 [==============================] - 0s 78ms/step\n"
|
990 |
+
]
|
991 |
+
}
|
992 |
+
],
|
993 |
+
"source": [
|
994 |
+
"res=model.predict(np.expand_dims(input_text,0))"
|
995 |
+
]
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"cell_type": "code",
|
999 |
+
"execution_count": 53,
|
1000 |
+
"id": "5df2d7da",
|
1001 |
+
"metadata": {},
|
1002 |
+
"outputs": [
|
1003 |
+
{
|
1004 |
+
"data": {
|
1005 |
+
"text/plain": [
|
1006 |
+
"Index(['toxic', 'severe_toxic', 'obscene', 'threat', 'insult',\n",
|
1007 |
+
" 'identity_hate'],\n",
|
1008 |
+
" dtype='object')"
|
1009 |
+
]
|
1010 |
+
},
|
1011 |
+
"execution_count": 53,
|
1012 |
+
"metadata": {},
|
1013 |
+
"output_type": "execute_result"
|
1014 |
+
}
|
1015 |
+
],
|
1016 |
+
"source": [
|
1017 |
+
"data.columns[2:]"
|
1018 |
+
]
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"cell_type": "code",
|
1022 |
+
"execution_count": 54,
|
1023 |
+
"id": "ee22bb73",
|
1024 |
+
"metadata": {},
|
1025 |
+
"outputs": [
|
1026 |
+
{
|
1027 |
+
"data": {
|
1028 |
+
"text/plain": [
|
1029 |
+
"array([[0.54140395, 0.00114176, 0.01782109, 0.10045966, 0.0319472 ,\n",
|
1030 |
+
" 0.02094165]], dtype=float32)"
|
1031 |
+
]
|
1032 |
+
},
|
1033 |
+
"execution_count": 54,
|
1034 |
+
"metadata": {},
|
1035 |
+
"output_type": "execute_result"
|
1036 |
+
}
|
1037 |
+
],
|
1038 |
+
"source": [
|
1039 |
+
"res"
|
1040 |
+
]
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"cell_type": "markdown",
|
1044 |
+
"id": "fa7378c8",
|
1045 |
+
"metadata": {},
|
1046 |
+
"source": [
|
1047 |
+
"## Evaluate the Model"
|
1048 |
+
]
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"cell_type": "code",
|
1052 |
+
"execution_count": 59,
|
1053 |
+
"id": "c2b08a8c",
|
1054 |
+
"metadata": {},
|
1055 |
+
"outputs": [],
|
1056 |
+
"source": [
|
1057 |
+
"model.save('finalproject.keras')"
|
1058 |
+
]
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"cell_type": "code",
|
1062 |
+
"execution_count": 60,
|
1063 |
+
"id": "71e114bc",
|
1064 |
+
"metadata": {},
|
1065 |
+
"outputs": [
|
1066 |
+
{
|
1067 |
+
"name": "stderr",
|
1068 |
+
"output_type": "stream",
|
1069 |
+
"text": [
|
1070 |
+
"C:\\Users\\karti\\anaconda3\\Lib\\site-packages\\keras\\src\\engine\\training.py:3103: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.\n",
|
1071 |
+
" saving_api.save_model(\n"
|
1072 |
+
]
|
1073 |
+
}
|
1074 |
+
],
|
1075 |
+
"source": [
|
1076 |
+
"model.save('finalprojecttoxic.h5')"
|
1077 |
+
]
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"cell_type": "markdown",
|
1081 |
+
"id": "6abdcdb8",
|
1082 |
+
"metadata": {},
|
1083 |
+
"source": [
|
1084 |
+
"## Making a Language Translation"
|
1085 |
+
]
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"cell_type": "code",
|
1089 |
+
"execution_count": 97,
|
1090 |
+
"id": "442cd16b",
|
1091 |
+
"metadata": {},
|
1092 |
+
"outputs": [],
|
1093 |
+
"source": [
|
1094 |
+
"from transformers import pipeline"
|
1095 |
+
]
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"cell_type": "code",
|
1099 |
+
"execution_count": 125,
|
1100 |
+
"id": "95b31788",
|
1101 |
+
"metadata": {},
|
1102 |
+
"outputs": [],
|
1103 |
+
"source": [
|
1104 |
+
"translator_german=pipeline(\"translation\", model=\"Helsinki-NLP/opus-mt-de-en\", tokenizer=\"Helsinki-NLP/opus-mt-de-en\")"
|
1105 |
+
]
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"cell_type": "code",
|
1109 |
+
"execution_count": 120,
|
1110 |
+
"id": "7e882490",
|
1111 |
+
"metadata": {},
|
1112 |
+
"outputs": [],
|
1113 |
+
"source": [
|
1114 |
+
"german=\"Hallo, wie heißt du?\""
|
1115 |
+
]
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"cell_type": "code",
|
1119 |
+
"execution_count": 126,
|
1120 |
+
"id": "dcfefba8",
|
1121 |
+
"metadata": {},
|
1122 |
+
"outputs": [
|
1123 |
+
{
|
1124 |
+
"data": {
|
1125 |
+
"text/plain": [
|
1126 |
+
"\"Hello, what's your name?\""
|
1127 |
+
]
|
1128 |
+
},
|
1129 |
+
"execution_count": 126,
|
1130 |
+
"metadata": {},
|
1131 |
+
"output_type": "execute_result"
|
1132 |
+
}
|
1133 |
+
],
|
1134 |
+
"source": [
|
1135 |
+
"en_to_german=translator_german(german)\n",
|
1136 |
+
"en_to_german[0]['translation_text']"
|
1137 |
+
]
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"cell_type": "code",
|
1141 |
+
"execution_count": 107,
|
1142 |
+
"id": "ea54de34",
|
1143 |
+
"metadata": {},
|
1144 |
+
"outputs": [],
|
1145 |
+
"source": [
|
1146 |
+
"translator_spanish = pipeline(\"translation\", model=\"Helsinki-NLP/opus-mt-es-en\", tokenizer=\"Helsinki-NLP/opus-mt-es-en\")"
|
1147 |
+
]
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"cell_type": "code",
|
1151 |
+
"execution_count": 117,
|
1152 |
+
"id": "07f1c640",
|
1153 |
+
"metadata": {},
|
1154 |
+
"outputs": [],
|
1155 |
+
"source": [
|
1156 |
+
"spanish_text = \"hola como estas\""
|
1157 |
+
]
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"cell_type": "code",
|
1161 |
+
"execution_count": 124,
|
1162 |
+
"id": "76b5f447",
|
1163 |
+
"metadata": {},
|
1164 |
+
"outputs": [
|
1165 |
+
{
|
1166 |
+
"data": {
|
1167 |
+
"text/plain": [
|
1168 |
+
"'Hello, how are you?'"
|
1169 |
+
]
|
1170 |
+
},
|
1171 |
+
"execution_count": 124,
|
1172 |
+
"metadata": {},
|
1173 |
+
"output_type": "execute_result"
|
1174 |
+
}
|
1175 |
+
],
|
1176 |
+
"source": [
|
1177 |
+
"en_to_spanish = translator(spanish_text)\n",
|
1178 |
+
"en_to_spanish[0]['translation_text']"
|
1179 |
+
]
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"cell_type": "markdown",
|
1183 |
+
"id": "e08fc4e7",
|
1184 |
+
"metadata": {},
|
1185 |
+
"source": [
|
1186 |
+
"## Test and Gradio"
|
1187 |
+
]
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"cell_type": "code",
|
1191 |
+
"execution_count": 61,
|
1192 |
+
"id": "7d5cdcb8",
|
1193 |
+
"metadata": {},
|
1194 |
+
"outputs": [],
|
1195 |
+
"source": [
|
1196 |
+
"import gradio as gr"
|
1197 |
+
]
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"cell_type": "code",
|
1201 |
+
"execution_count": 62,
|
1202 |
+
"id": "560ec8e5",
|
1203 |
+
"metadata": {},
|
1204 |
+
"outputs": [],
|
1205 |
+
"source": [
|
1206 |
+
"model=tf.keras.models.load_model('finalprojecttoxic.h5')"
|
1207 |
+
]
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"cell_type": "code",
|
1211 |
+
"execution_count": 73,
|
1212 |
+
"id": "aaf4a3cd",
|
1213 |
+
"metadata": {},
|
1214 |
+
"outputs": [],
|
1215 |
+
"source": [
|
1216 |
+
"input_str=vectorizer('Hey i freaking hate you!. I\\'m going to hurt you!')"
|
1217 |
+
]
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"cell_type": "code",
|
1221 |
+
"execution_count": 74,
|
1222 |
+
"id": "54761270",
|
1223 |
+
"metadata": {},
|
1224 |
+
"outputs": [
|
1225 |
+
{
|
1226 |
+
"name": "stdout",
|
1227 |
+
"output_type": "stream",
|
1228 |
+
"text": [
|
1229 |
+
"1/1 [==============================] - 0s 88ms/step\n"
|
1230 |
+
]
|
1231 |
+
}
|
1232 |
+
],
|
1233 |
+
"source": [
|
1234 |
+
"res=model.predict(np.expand_dims(input_str,0))"
|
1235 |
+
]
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"cell_type": "code",
|
1239 |
+
"execution_count": 75,
|
1240 |
+
"id": "ba15136b",
|
1241 |
+
"metadata": {},
|
1242 |
+
"outputs": [
|
1243 |
+
{
|
1244 |
+
"data": {
|
1245 |
+
"text/plain": [
|
1246 |
+
"array([[0.9133858 , 0.00198671, 0.0333592 , 0.00411558, 0.71037763,\n",
|
1247 |
+
" 0.00563182]], dtype=float32)"
|
1248 |
+
]
|
1249 |
+
},
|
1250 |
+
"execution_count": 75,
|
1251 |
+
"metadata": {},
|
1252 |
+
"output_type": "execute_result"
|
1253 |
+
}
|
1254 |
+
],
|
1255 |
+
"source": [
|
1256 |
+
"res"
|
1257 |
+
]
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"cell_type": "code",
|
1261 |
+
"execution_count": 72,
|
1262 |
+
"id": "c189f6c9",
|
1263 |
+
"metadata": {},
|
1264 |
+
"outputs": [
|
1265 |
+
{
|
1266 |
+
"data": {
|
1267 |
+
"text/plain": [
|
1268 |
+
"Index(['toxic', 'severe_toxic', 'obscene', 'threat', 'insult',\n",
|
1269 |
+
" 'identity_hate'],\n",
|
1270 |
+
" dtype='object')"
|
1271 |
+
]
|
1272 |
+
},
|
1273 |
+
"execution_count": 72,
|
1274 |
+
"metadata": {},
|
1275 |
+
"output_type": "execute_result"
|
1276 |
+
}
|
1277 |
+
],
|
1278 |
+
"source": [
|
1279 |
+
"data.columns[2:]"
|
1280 |
+
]
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"cell_type": "code",
|
1284 |
+
"execution_count": 122,
|
1285 |
+
"id": "8c1fbac0",
|
1286 |
+
"metadata": {},
|
1287 |
+
"outputs": [],
|
1288 |
+
"source": [
|
1289 |
+
"translator_hindi = pipeline(\"translation\", model=\"Helsinki-NLP/opus-mt-hi-en\", tokenizer=\"Helsinki-NLP/opus-mt-hi-en\")"
|
1290 |
+
]
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"cell_type": "code",
|
1294 |
+
"execution_count": 104,
|
1295 |
+
"id": "c8db9d6d",
|
1296 |
+
"metadata": {},
|
1297 |
+
"outputs": [],
|
1298 |
+
"source": [
|
1299 |
+
"hindi_text = \"नमस्ते, आप कैसे हैं?\""
|
1300 |
+
]
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"cell_type": "code",
|
1304 |
+
"execution_count": 123,
|
1305 |
+
"id": "9c95d205",
|
1306 |
+
"metadata": {},
|
1307 |
+
"outputs": [
|
1308 |
+
{
|
1309 |
+
"data": {
|
1310 |
+
"text/plain": [
|
1311 |
+
"'Hello, how are you?'"
|
1312 |
+
]
|
1313 |
+
},
|
1314 |
+
"execution_count": 123,
|
1315 |
+
"metadata": {},
|
1316 |
+
"output_type": "execute_result"
|
1317 |
+
}
|
1318 |
+
],
|
1319 |
+
"source": [
|
1320 |
+
"en_to_hin = translator_hindi(hindi_text)\n",
|
1321 |
+
"en_to_hin[0]['translation_text']"
|
1322 |
+
]
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"cell_type": "code",
|
1326 |
+
"execution_count": 131,
|
1327 |
+
"id": "3d25803f",
|
1328 |
+
"metadata": {},
|
1329 |
+
"outputs": [],
|
1330 |
+
"source": [
|
1331 |
+
"def translate_hindi(from_text):\n",
|
1332 |
+
" result2 = translator_hindi(from_text)\n",
|
1333 |
+
" \n",
|
1334 |
+
" return result2[0]['translation_text']"
|
1335 |
+
]
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"cell_type": "code",
|
1339 |
+
"execution_count": 133,
|
1340 |
+
"id": "52108859",
|
1341 |
+
"metadata": {},
|
1342 |
+
"outputs": [
|
1343 |
+
{
|
1344 |
+
"data": {
|
1345 |
+
"text/plain": [
|
1346 |
+
"'Hello, how are you?'"
|
1347 |
+
]
|
1348 |
+
},
|
1349 |
+
"execution_count": 133,
|
1350 |
+
"metadata": {},
|
1351 |
+
"output_type": "execute_result"
|
1352 |
+
}
|
1353 |
+
],
|
1354 |
+
"source": [
|
1355 |
+
"translate_hindi('नमस्ते, आप कैसे हैं?')"
|
1356 |
+
]
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"cell_type": "code",
|
1360 |
+
"execution_count": 94,
|
1361 |
+
"id": "837c3093",
|
1362 |
+
"metadata": {},
|
1363 |
+
"outputs": [],
|
1364 |
+
"source": [
|
1365 |
+
"def score_comment(comment):\n",
|
1366 |
+
" vectorized_comment = vectorizer([comment])\n",
|
1367 |
+
" results=model.predict(vectorized_comment)\n",
|
1368 |
+
" \n",
|
1369 |
+
" text=''\n",
|
1370 |
+
" for idx, col in enumerate(data.columns[2:]):\n",
|
1371 |
+
" text+= '{}: {}\\n'.format(col, results[0][idx]>0.5)\n",
|
1372 |
+
" \n",
|
1373 |
+
" return text"
|
1374 |
+
]
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"cell_type": "code",
|
1378 |
+
"execution_count": 163,
|
1379 |
+
"id": "21ea015f",
|
1380 |
+
"metadata": {},
|
1381 |
+
"outputs": [],
|
1382 |
+
"source": [
|
1383 |
+
"def combined_models(input):\n",
|
1384 |
+
" output1=translate_hindi(input)\n",
|
1385 |
+
" output2=score_comment(input)\n",
|
1386 |
+
" \n",
|
1387 |
+
" return output1, output2"
|
1388 |
+
]
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"cell_type": "code",
|
1392 |
+
"execution_count": 166,
|
1393 |
+
"id": "ca5d14a9",
|
1394 |
+
"metadata": {},
|
1395 |
+
"outputs": [
|
1396 |
+
{
|
1397 |
+
"name": "stdout",
|
1398 |
+
"output_type": "stream",
|
1399 |
+
"text": [
|
1400 |
+
"1/1 [==============================] - 0s 109ms/step\n"
|
1401 |
+
]
|
1402 |
+
}
|
1403 |
+
],
|
1404 |
+
"source": [
|
1405 |
+
"interface = gr.Interface(fn=combined_models, inputs=\"text\", outputs=[\"text\",\"text\"],title=\"Toxic Comment Analyzer\")"
|
1406 |
+
]
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"cell_type": "code",
|
1410 |
+
"execution_count": 168,
|
1411 |
+
"id": "cb485bb9",
|
1412 |
+
"metadata": {},
|
1413 |
+
"outputs": [
|
1414 |
+
{
|
1415 |
+
"name": "stdout",
|
1416 |
+
"output_type": "stream",
|
1417 |
+
"text": [
|
1418 |
+
"Running on local URL: http://127.0.0.1:7871\n",
|
1419 |
+
"Running on public URL: https://27f88e54e3177749fa.gradio.live\n",
|
1420 |
+
"\n",
|
1421 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
1422 |
+
]
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"data": {
|
1426 |
+
"text/html": [
|
1427 |
+
"<div><iframe src=\"https://27f88e54e3177749fa.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
1428 |
+
],
|
1429 |
+
"text/plain": [
|
1430 |
+
"<IPython.core.display.HTML object>"
|
1431 |
+
]
|
1432 |
+
},
|
1433 |
+
"metadata": {},
|
1434 |
+
"output_type": "display_data"
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"data": {
|
1438 |
+
"text/plain": []
|
1439 |
+
},
|
1440 |
+
"execution_count": 168,
|
1441 |
+
"metadata": {},
|
1442 |
+
"output_type": "execute_result"
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"name": "stdout",
|
1446 |
+
"output_type": "stream",
|
1447 |
+
"text": [
|
1448 |
+
"1/1 [==============================] - 0s 426ms/step\n"
|
1449 |
+
]
|
1450 |
+
}
|
1451 |
+
],
|
1452 |
+
"source": [
|
1453 |
+
"interface.launch(share=True)"
|
1454 |
+
]
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"cell_type": "code",
|
1458 |
+
"execution_count": null,
|
1459 |
+
"id": "e30aa7aa",
|
1460 |
+
"metadata": {},
|
1461 |
+
"outputs": [],
|
1462 |
+
"source": []
|
1463 |
+
}
|
1464 |
+
],
|
1465 |
+
"metadata": {
|
1466 |
+
"kernelspec": {
|
1467 |
+
"display_name": "Python 3 (ipykernel)",
|
1468 |
+
"language": "python",
|
1469 |
+
"name": "python3"
|
1470 |
+
},
|
1471 |
+
"language_info": {
|
1472 |
+
"codemirror_mode": {
|
1473 |
+
"name": "ipython",
|
1474 |
+
"version": 3
|
1475 |
+
},
|
1476 |
+
"file_extension": ".py",
|
1477 |
+
"mimetype": "text/x-python",
|
1478 |
+
"name": "python",
|
1479 |
+
"nbconvert_exporter": "python",
|
1480 |
+
"pygments_lexer": "ipython3",
|
1481 |
+
"version": "3.11.3"
|
1482 |
+
}
|
1483 |
+
},
|
1484 |
+
"nbformat": 4,
|
1485 |
+
"nbformat_minor": 5
|
1486 |
+
}
|