Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
"""RAG_using_Llama3.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1b-ZDo3QQ-axgm804UlHu3ohZwnoXz5L1 | |
# install dependecies | |
""" | |
!pip install -q datasets sentence-transformers faiss-cpu accelerate | |
from huggingface_hub import notebook_login | |
notebook_login() | |
"""# embed dataset | |
this is a slow procedure so you might consider saving your results | |
""" | |
from datasets import load_dataset | |
dataset = load_dataset("KarthikaRajagopal/wikipedia-2") | |
dataset | |
from sentence_transformers import SentenceTransformer | |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") | |
# embed the dataset | |
def embed(batch): | |
# or you can combine multiple columns here, for example the title and the text | |
information = batch["text"] | |
return {"embeddings" : ST.encode(information)} | |
dataset = dataset.map(embed,batched=True,batch_size=16) | |
!pip install datasets | |
from datasets import load_dataset | |
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded") | |
# Push it to your Hugging Face repository | |
dataset.push_to_hub("KarthikaRajagopal/wikipedia-2", revision="embedded") | |
from datasets import load_dataset | |
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded") | |
data = dataset["train"] | |
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset | |
def search(query: str, k: int = 3 ): | |
"""a function that embeds a new query and returns the most probable results""" | |
embedded_query = ST.encode(query) # embed new query | |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results | |
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings | |
k=k # get only top k results | |
) | |
return scores, retrieved_examples | |
scores , result = search("anarchy", 4 ) # search for word anarchy and get the best 4 matching values from the dataset | |
# the lower the better | |
scores | |
result['title'] | |
print(result["text"][0]) | |
"""# chatbot on top of the retrieved results""" | |
!pip install -q datasets sentence-transformers faiss-cpu accelerate bitsandbytes | |
from sentence_transformers import SentenceTransformer | |
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") | |
from datasets import load_dataset | |
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded") | |
data = dataset["train"] | |
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset | |
def search(query: str, k: int = 3 ): | |
"""a function that embeds a new query and returns the most probable results""" | |
embedded_query = ST.encode(query) # embed new query | |
scores, retrieved_examples = data.get_nearest_examples( # retrieve results | |
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings | |
k=k # get only top k results | |
) | |
return scores, retrieved_examples | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
import torch | |
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
quantization_config=bnb_config | |
) | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
SYS_PROMPT = """You are an assistant for answering questions. | |
You are given the extracted parts of a long document and a question. Provide a conversational answer. | |
If you don't know the answer, just say "I do not know." Don't make up an answer.""" | |
def format_prompt(prompt,retrieved_documents,k): | |
"""using the retrieved documents we will prompt the model to generate our responses""" | |
PROMPT = f"Question:{prompt}\nContext:" | |
for idx in range(k) : | |
PROMPT+= f"{retrieved_documents['text'][idx]}\n" | |
return PROMPT | |
def generate(formatted_prompt): | |
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM | |
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}] | |
# tell the model to generate | |
input_ids = tokenizer.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(model.device) | |
outputs = model.generate( | |
input_ids, | |
max_new_tokens=1024, | |
eos_token_id=terminators, | |
do_sample=True, | |
temperature=0.6, | |
top_p=0.9, | |
) | |
response = outputs[0][input_ids.shape[-1]:] | |
return tokenizer.decode(response, skip_special_tokens=True) | |
def rag_chatbot(prompt:str,k:int=2): | |
scores , retrieved_documents = search(prompt, k) | |
formatted_prompt = format_prompt(prompt,retrieved_documents,k) | |
return generate(formatted_prompt) | |
rag_chatbot("what's anarchy ?", k = 2) | |