RAG_Chatbot / RAG_using_Llama3.py.py
KarthikaRajagopal's picture
Upload RAG_using_Llama3.py.py
e21d6f2 verified
# -*- coding: utf-8 -*-
"""RAG_using_Llama3.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1b-ZDo3QQ-axgm804UlHu3ohZwnoXz5L1
# install dependecies
"""
!pip install -q datasets sentence-transformers faiss-cpu accelerate
from huggingface_hub import notebook_login
notebook_login()
"""# embed dataset
this is a slow procedure so you might consider saving your results
"""
from datasets import load_dataset
dataset = load_dataset("KarthikaRajagopal/wikipedia-2")
dataset
from sentence_transformers import SentenceTransformer
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
# embed the dataset
def embed(batch):
# or you can combine multiple columns here, for example the title and the text
information = batch["text"]
return {"embeddings" : ST.encode(information)}
dataset = dataset.map(embed,batched=True,batch_size=16)
!pip install datasets
from datasets import load_dataset
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded")
# Push it to your Hugging Face repository
dataset.push_to_hub("KarthikaRajagopal/wikipedia-2", revision="embedded")
from datasets import load_dataset
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded")
data = dataset["train"]
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
def search(query: str, k: int = 3 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = ST.encode(query) # embed new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
scores , result = search("anarchy", 4 ) # search for word anarchy and get the best 4 matching values from the dataset
# the lower the better
scores
result['title']
print(result["text"][0])
"""# chatbot on top of the retrieved results"""
!pip install -q datasets sentence-transformers faiss-cpu accelerate bitsandbytes
from sentence_transformers import SentenceTransformer
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
from datasets import load_dataset
dataset = load_dataset("KarthikaRajagopal/wikipedia-2",revision = "embedded")
data = dataset["train"]
data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
def search(query: str, k: int = 3 ):
"""a function that embeds a new query and returns the most probable results"""
embedded_query = ST.encode(query) # embed new query
scores, retrieved_examples = data.get_nearest_examples( # retrieve results
"embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
k=k # get only top k results
)
return scores, retrieved_examples
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=bnb_config
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
SYS_PROMPT = """You are an assistant for answering questions.
You are given the extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "I do not know." Don't make up an answer."""
def format_prompt(prompt,retrieved_documents,k):
"""using the retrieved documents we will prompt the model to generate our responses"""
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k) :
PROMPT+= f"{retrieved_documents['text'][idx]}\n"
return PROMPT
def generate(formatted_prompt):
formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
# tell the model to generate
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
return tokenizer.decode(response, skip_special_tokens=True)
def rag_chatbot(prompt:str,k:int=2):
scores , retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt,retrieved_documents,k)
return generate(formatted_prompt)
rag_chatbot("what's anarchy ?", k = 2)