Kartheekb7 commited on
Commit
e0bdd7f
1 Parent(s): aa3f38a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -12
app.py CHANGED
@@ -5,12 +5,8 @@ from PIL import Image
5
  from datasets import load_dataset
6
  import random
7
  from datasets import load_from_disk
8
-
9
- dataset = load_from_disk("./train")
10
-
11
  from collections import OrderedDict
12
-
13
-
14
  FRUITS30_CLASSES = OrderedDict(
15
  {
16
  "0" : "acerolas",
@@ -45,9 +41,7 @@ FRUITS30_CLASSES = OrderedDict(
45
  "29" : "watermelons"
46
  }
47
  )
48
-
49
  labels = list(FRUITS30_CLASSES.values())
50
-
51
  model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
52
  model.eval() # model in train mode by default, impacts some models with BatchNorm or stochastic depth active
53
  tokenizer = open_clip.get_tokenizer('ViT-B-32')
@@ -55,7 +49,6 @@ tokenizer = open_clip.get_tokenizer('ViT-B-32')
55
  def create_interface():
56
  # Store current correct labels in a mutable container
57
  current_correct_labels = []
58
-
59
  def get_image():
60
  indices = random.sample(range(len(dataset)), 1)
61
  selected_images = [dataset[i]['image'] for i in indices]
@@ -78,7 +71,7 @@ def create_interface():
78
  with gr.Blocks() as demo:
79
  # Create components
80
  with gr.Row():
81
- img1 = gr.Image(type="pil", label="Fruit")
82
  with gr.Row():
83
  label1 = gr.Textbox(label="Name this fruit")
84
 
@@ -92,8 +85,6 @@ def create_interface():
92
  fn=get_image,
93
  outputs=[img1]
94
  )
95
-
96
-
97
  # Evaluate user input on submit button click
98
  submit_btn.click(
99
  fn=on_submit,
@@ -101,7 +92,7 @@ def create_interface():
101
  outputs=result
102
  )
103
 
104
- demo.launch()
105
 
106
  # Run the game
107
  create_interface()
 
5
  from datasets import load_dataset
6
  import random
7
  from datasets import load_from_disk
8
+ dataset = load_from_disk("./fruits_dataset/train/train")
 
 
9
  from collections import OrderedDict
 
 
10
  FRUITS30_CLASSES = OrderedDict(
11
  {
12
  "0" : "acerolas",
 
41
  "29" : "watermelons"
42
  }
43
  )
 
44
  labels = list(FRUITS30_CLASSES.values())
 
45
  model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
46
  model.eval() # model in train mode by default, impacts some models with BatchNorm or stochastic depth active
47
  tokenizer = open_clip.get_tokenizer('ViT-B-32')
 
49
  def create_interface():
50
  # Store current correct labels in a mutable container
51
  current_correct_labels = []
 
52
  def get_image():
53
  indices = random.sample(range(len(dataset)), 1)
54
  selected_images = [dataset[i]['image'] for i in indices]
 
71
  with gr.Blocks() as demo:
72
  # Create components
73
  with gr.Row():
74
+ img1 = gr.Image(type="pil", label="Fruit",height = 256,width = 256)
75
  with gr.Row():
76
  label1 = gr.Textbox(label="Name this fruit")
77
 
 
85
  fn=get_image,
86
  outputs=[img1]
87
  )
 
 
88
  # Evaluate user input on submit button click
89
  submit_btn.click(
90
  fn=on_submit,
 
92
  outputs=result
93
  )
94
 
95
+ demo.launch(debug = True)
96
 
97
  # Run the game
98
  create_interface()