Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| st.title("Store Sale Prediction") | |
| # Batch Prediction | |
| st.subheader("Online Prediction") | |
| # Input fields for Store data | |
| Product_Id = st.text_input("Product_Id : ") | |
| Product_Weight = st.number_input("Product_Weight ", min_value=0, max_value=50, value=10) | |
| Product_Sugar_Content = st.selectbox("Product_Sugar_Content ", ["Low Sugar", "Regular", and "no sugar"]) | |
| Product_Allocated_Area = st.number_input("Product_Allocated_Area", min_value=18, max_value=100, value=30) | |
| Product_Type = st.selectbox("Product_Type", ["Fruits and Vegetables", "Snack Foods", "Frozen Foods", | |
| "Dairy", | |
| "Household", | |
| "Baking Goods", | |
| "Canned", | |
| "Health and Hygiene", | |
| "Meat", | |
| "Soft Drinks", | |
| "Breads", | |
| "Hard Drinks", | |
| "Others", | |
| "Starchy Foods", | |
| "Breakfast", | |
| "Seafood" ]) | |
| Product_MRP = st.number_input("Product_MRP", min_value=0.0, value=1000.0) | |
| Store_Id = st.selectbox("Store_Id", ["OUT004","OUT001", "OUT003", "OUT002" ]) | |
| Store_Establishment_Year = st.number_input("Store_Establishment_Year", ["Yes", "No"]) | |
| Store_Size = st.selectbox("Store_Size", ["Medium","High","Small"]) | |
| Store_Location_City_Type = st.Store_Location_City_Type("Store_Location_City_Type", ["Tier 2","Tier 1","Tier 3"]) | |
| Store_Type = st.Store_Type("Store_Type", ["Supermarket Type2","Supermarket Type1","Departmental Store","Food Mart"]) | |
| Store_data = { | |
| 'Product_Id' : Product_Id, | |
| 'Product_Weight': Product_Weight, | |
| 'Product_Sugar_Content': Product_Sugar_Content, | |
| 'Product_Allocated_Area': Product_Allocated_Area, | |
| 'Product_Type': Product_Type, | |
| 'Product_MRP': Product_MRP, | |
| 'Store_Id': Store_Id, | |
| 'Store_Establishment_Year': Store_Establishment_Year, | |
| 'Store_Size': Store_Size, | |
| 'Store_Location_City_Type': Store_Location_City_Type, | |
| 'Store_Type': Store_Type | |
| } | |
| if st.button("Predict", type='primary'): | |
| response = requests.post("https://<user_name>-<space_name>.hf.space/v1/Store", json=Store_data) # enter user name and space name before running the cell | |
| if response.status_code == 200: | |
| result = response.json() | |
| churn_prediction = result["Prediction"] # Extract only the value | |
| st.write(f"Based on the information provided, the Store with ID {StoreID} is likely to {churn_prediction}.") | |
| else: | |
| st.error("Error in API request") | |
| # Batch Prediction | |
| st.subheader("Batch Prediction") | |
| file = st.file_uploader("Upload CSV file", type=["csv"]) | |
| if file is not None: | |
| if st.button("Predict for Batch", type='primary'): | |
| response = requests.post("https://<user_name>-<space_name>.hf.space/v1/Storebatch", files={"file": file}) # enter user name and space name before running the cell | |
| if response.status_code == 200: | |
| result = response.json() | |
| st.header("Batch Prediction Results") | |
| st.write(result) | |
| else: | |
| st.error("Error in API request") | |