DAM_plus / app.py
Kari's picture
add one model
881425e
# Helsinki-NLP/opus-mt-zh-en
import gradio as gr
from transformers import pipeline
import os
translator_plus = pipeline("translation", model=os.path.join(os.getcwd(),"test-ml-trained+"), max_time=5)
translator_plus_1 = pipeline("translation", model=os.path.join(os.getcwd(),"test-ml-trained+_1"), max_time=5)
translator_plus_2 = pipeline("translation", model=os.path.join(os.getcwd(),"test-ml-trained+_2"), max_time=5)
translator_plus_3 = pipeline("translation", model=os.path.join(os.getcwd(),"test-ml-trained+_3"), max_time=5)
translator_plus_4 = pipeline("translation", model=os.path.join(os.getcwd(),"test-ml-trained+_4"), max_time=5)
# text-text
def en2zh_plus(text):
pres=[]
enNames=text.split('\n')
for name in enNames:
pre = translator_plus(name.replace('_',' '), )[0]["translation_text"]
pre = pre+'\n'+ translator_plus_1(name.replace('_',' '), )[0]["translation_text"]
pre = pre+'\n'+ translator_plus_2(name.replace('_',' '), )[0]["translation_text"]
pre = pre+'\n'+ translator_plus_3(name.replace('_',' '), )[0]["translation_text"]
pre = pre+'\n'+ translator_plus_4(name.replace('_',' '), )[0]["translation_text"]
pres.append(pre)
print(name,pre)
return '\n'.join(pres)
inputs=gr.TextArea(lines=10,label='请输入英文表名和英文字段名',placeholder='表明和字段名之间用英文冒号:分隔,每组输入以换行\\n为分隔')
outputs=gr.TextArea(lines=10,label='参考转译结果')
interface_plus = gr.Interface(fn=en2zh_plus, inputs=inputs, outputs=outputs)
interface_plus.launch()