Karay Akar commited on
Commit
9b1625c
·
1 Parent(s): 650e533
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +0 -35
  2. README.md +0 -13
  3. app.py +0 -230
  4. chatterbox/src/chatterbox/__init__.py +0 -10
  5. chatterbox/src/chatterbox/__pycache__/__init__.cpython-310.pyc +0 -0
  6. chatterbox/src/chatterbox/__pycache__/tts.cpython-310.pyc +0 -0
  7. chatterbox/src/chatterbox/__pycache__/vc.cpython-310.pyc +0 -0
  8. chatterbox/src/chatterbox/models/__init__.py +0 -0
  9. chatterbox/src/chatterbox/models/__pycache__/__init__.cpython-310.pyc +0 -0
  10. chatterbox/src/chatterbox/models/__pycache__/model_v2.cpython-310.pyc +0 -0
  11. chatterbox/src/chatterbox/models/__pycache__/utils.cpython-310.pyc +0 -0
  12. chatterbox/src/chatterbox/models/model_v2.py +0 -405
  13. chatterbox/src/chatterbox/models/s3gen/__init__.py +0 -2
  14. chatterbox/src/chatterbox/models/s3gen/__pycache__/__init__.cpython-310.pyc +0 -0
  15. chatterbox/src/chatterbox/models/s3gen/__pycache__/configs.cpython-310.pyc +0 -0
  16. chatterbox/src/chatterbox/models/s3gen/__pycache__/const.cpython-310.pyc +0 -0
  17. chatterbox/src/chatterbox/models/s3gen/__pycache__/decoder.cpython-310.pyc +0 -0
  18. chatterbox/src/chatterbox/models/s3gen/__pycache__/f0_predictor.cpython-310.pyc +0 -0
  19. chatterbox/src/chatterbox/models/s3gen/__pycache__/flow.cpython-310.pyc +0 -0
  20. chatterbox/src/chatterbox/models/s3gen/__pycache__/flow_matching.cpython-310.pyc +0 -0
  21. chatterbox/src/chatterbox/models/s3gen/__pycache__/hifigan.cpython-310.pyc +0 -0
  22. chatterbox/src/chatterbox/models/s3gen/__pycache__/s3gen.cpython-310.pyc +0 -0
  23. chatterbox/src/chatterbox/models/s3gen/__pycache__/xvector.cpython-310.pyc +0 -0
  24. chatterbox/src/chatterbox/models/s3gen/configs.py +0 -10
  25. chatterbox/src/chatterbox/models/s3gen/const.py +0 -1
  26. chatterbox/src/chatterbox/models/s3gen/decoder.py +0 -317
  27. chatterbox/src/chatterbox/models/s3gen/f0_predictor.py +0 -55
  28. chatterbox/src/chatterbox/models/s3gen/flow.py +0 -282
  29. chatterbox/src/chatterbox/models/s3gen/flow_matching.py +0 -218
  30. chatterbox/src/chatterbox/models/s3gen/hifigan.py +0 -474
  31. chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/decoder.cpython-310.pyc +0 -0
  32. chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/flow_matching.cpython-310.pyc +0 -0
  33. chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/transformer.cpython-310.pyc +0 -0
  34. chatterbox/src/chatterbox/models/s3gen/matcha/decoder.py +0 -443
  35. chatterbox/src/chatterbox/models/s3gen/matcha/flow_matching.py +0 -129
  36. chatterbox/src/chatterbox/models/s3gen/matcha/text_encoder.py +0 -413
  37. chatterbox/src/chatterbox/models/s3gen/matcha/transformer.py +0 -316
  38. chatterbox/src/chatterbox/models/s3gen/s3gen.py +0 -298
  39. chatterbox/src/chatterbox/models/s3gen/transformer/__init__.py +0 -0
  40. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/__init__.cpython-310.pyc +0 -0
  41. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/activation.cpython-310.pyc +0 -0
  42. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/attention.cpython-310.pyc +0 -0
  43. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/convolution.cpython-310.pyc +0 -0
  44. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/embedding.cpython-310.pyc +0 -0
  45. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/encoder_layer.cpython-310.pyc +0 -0
  46. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/positionwise_feed_forward.cpython-310.pyc +0 -0
  47. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/subsampling.cpython-310.pyc +0 -0
  48. chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/upsample_encoder.cpython-310.pyc +0 -0
  49. chatterbox/src/chatterbox/models/s3gen/transformer/activation.py +0 -84
  50. chatterbox/src/chatterbox/models/s3gen/transformer/attention.py +0 -330
.gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Chtrbx
3
- emoji: ⚡
4
- colorFrom: red
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.42.0
8
- app_file: app.py
9
- pinned: false
10
- license: cc-by-nc-4.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py DELETED
@@ -1,230 +0,0 @@
1
- import random
2
- import numpy as np
3
- import torch
4
- import gradio as gr
5
- from chatterbox.tts import ChatterboxTTS
6
- import json
7
- from pathlib import Path
8
- from torch import nn, Tensor
9
-
10
- import threading
11
-
12
- device = "cuda" if torch.cuda.is_available() else "cpu"
13
- t3_model_path="https://huggingface.co/Karayakar/PRVCHTBX/resolve/main/model.safetensors"
14
- tokenizer_path="https://huggingface.co/Karayakar/PRVCHTBX/resolve/main/tokenizer.json"
15
- model=None
16
- import functools
17
-
18
- _MODEL_SINGLETON = None
19
- _MODEL_LOCK = threading.Lock()
20
-
21
-
22
- def get_model_singleton():
23
- global _MODEL_SINGLETON
24
- if _MODEL_SINGLETON is None:
25
- with _MODEL_LOCK:
26
- if _MODEL_SINGLETON is None: # double-checked locking
27
- _MODEL_SINGLETON = load_model_init()
28
- return _MODEL_SINGLETON
29
-
30
- def set_seed(seed: int):
31
- torch.manual_seed(seed)
32
- torch.cuda.manual_seed(seed)
33
- torch.cuda.manual_seed_all(seed)
34
- random.seed(seed)
35
- np.random.seed(seed)
36
-
37
- def set_inference_flags(tts, device="cuda", dtype=torch.bfloat16):
38
- # t3 (LLM tarafı)
39
- if hasattr(tts, "t3") and isinstance(tts.t3, nn.Module):
40
- tts.t3.eval()
41
- try:
42
- tts.t3.to(device=device, dtype=dtype)
43
- except Exception:
44
- pass
45
- # varsa HF backbone'u derle
46
- if hasattr(tts.t3, "tfmr"):
47
- try:
48
- tts.t3.tfmr = torch.compile(tts.t3.tfmr, mode="reduce-overhead")
49
- except Exception as e:
50
- print("compile skipped:", e)
51
-
52
- # s3gen (speech generator / tokenizer çevresi)
53
- if hasattr(tts, "s3gen") and isinstance(tts.s3gen, nn.Module):
54
- tts.s3gen.eval()
55
- try:
56
- tts.s3gen.to(device=device, dtype=dtype)
57
- except Exception:
58
- pass
59
-
60
- # voice encoder
61
- if hasattr(tts, "ve") and isinstance(tts.ve, nn.Module):
62
- tts.ve.eval()
63
- try:
64
- tts.ve.to(device=device, dtype=dtype)
65
- except Exception:
66
- pass
67
-
68
- def load_model():
69
- return get_model_singleton()
70
-
71
- def load_model_init():
72
- print("LOAD MODEL CALLED")
73
- device = "cuda" if torch.cuda.is_available() else "cpu"
74
- t3_model_path="https://huggingface.co/Karayakar/PRVCHTBX/resolve/main/model.safetensors"
75
- tokenizer_path="https://huggingface.co/Karayakar/PRVCHTBX/resolve/main/tokenizer.json"
76
-
77
- with open("/model_path.json", "r") as f:
78
- model_path = json.load(f)
79
-
80
-
81
- if not t3_model_path or not Path(t3_model_path).exists():
82
- raise gr.Error("Please select a valid T3 model file")
83
-
84
- voice_encoder_path = model_path["voice_encoder_path"]
85
- s3gen_path = model_path["s3gen_path"]
86
-
87
- if not tokenizer_path or not Path(tokenizer_path).exists():
88
- tokenizer_path = model_path["tokenizer_path"]
89
-
90
- conds_path = Path(model_path["conds_path"])
91
-
92
- #if model is None:
93
- #model = ChatterboxTTS.from_pretrained(DEVICE)
94
- model = ChatterboxTTS.from_specified(
95
- voice_encoder_path=voice_encoder_path,
96
- t3_path=t3_model_path,
97
- s3gen_path=s3gen_path,
98
- tokenizer_path=tokenizer_path,
99
- conds_path=conds_path,
100
- device=device)
101
- #model = ChatterboxTTS.from_pretrained(DEVICE)
102
-
103
- # --- HIZ AYARLARI: tam burada yap ---
104
- # hız bayrakları (3090)
105
- torch.set_float32_matmul_precision("high")
106
- from torch.backends.cuda import sdp_kernel
107
- sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False)
108
-
109
- # weights float32 doesn't work --> set_inference_flags(model, device=device, dtype=torch.bfloat16) # <- burada
110
- torch.backends.cudnn.benchmark = True
111
-
112
-
113
- return model
114
-
115
-
116
-
117
-
118
- def generate( text, audio_prompt_path, exaggeration, temperature, seed_num, cfgw, min_p, top_p, repetition_penalty):
119
- #t3_model_path="G:\\OPENAI\\chatterbox\\checkpoint_159960\\model.safetensors"
120
- #tokenizer_path="G:\\OPENAI\\chatterbox\\checkpoint_159960\\tokenizer.json"
121
- #device = "cuda" if torch.cuda.is_available() else "cpu"
122
- #with open("G:\\OPENAI\\chatterbox\\checkpoint_159960\\model_path.json", "r") as f:
123
- # model_path = json.load(f)
124
- #
125
- #
126
- #if not t3_model_path or not Path(t3_model_path).exists():
127
- # raise gr.Error("Please select a valid T3 model file")
128
- #
129
- #voice_encoder_path = model_path["voice_encoder_path"]
130
- #s3gen_path = model_path["s3gen_path"]
131
- #
132
- #if not tokenizer_path or not Path(tokenizer_path).exists():
133
- # tokenizer_path = model_path["tokenizer_path"]
134
- #
135
- #conds_path = Path(model_path["conds_path"])
136
- #
137
- #if model is None:
138
- # #model = ChatterboxTTS.from_pretrained(DEVICE)
139
- # model = ChatterboxTTS.from_specified(
140
- # voice_encoder_path=voice_encoder_path,
141
- # t3_path=t3_model_path,
142
- # s3gen_path=s3gen_path,
143
- # tokenizer_path=tokenizer_path,
144
- # conds_path=conds_path,
145
- # device=device)
146
-
147
- #if model is None:
148
- model=get_model_singleton()
149
-
150
- if seed_num != 0:
151
- set_seed(int(seed_num))
152
-
153
- #wav = model.generate(
154
- # text,
155
- # audio_prompt_path=audio_prompt_path,
156
- # exaggeration=exaggeration,
157
- # temperature=temperature,
158
- # cfg_weight=cfgw,
159
- # min_p=min_p,
160
- # top_p=top_p,
161
- # repetition_penalty=repetition_penalty,
162
- #)
163
-
164
- wav= model.generate(
165
-
166
-
167
- text,
168
- repetition_penalty=repetition_penalty,
169
- min_p=min_p,
170
- top_p=top_p,
171
- audio_prompt_path=audio_prompt_path,
172
- exaggeration=exaggeration,
173
- cfg_weight=cfgw,
174
- temperature=temperature,
175
-
176
-
177
- )
178
- return (model.sr, wav.squeeze(0).numpy())
179
-
180
-
181
- with gr.Blocks() as demo:
182
- #model_state = gr.State(None) # Loaded once per session/user
183
-
184
- with gr.Row():
185
- with gr.Column():
186
- text = gr.Textbox(
187
- value="Yapzek.ai, çok yakında ses klonlama özelliğiyle sınırları bir adım daha öteye taşıyor! Kendi sesinizi birkaç dakikalık örnekle klonlayabilecek, dilediğiniz metni kendi sesinizle, üstelik duygulu ve doğal bir şekilde seslendirebileceksiniz.",
188
- label="Text to synthesize (max chars 300)",
189
- max_lines=5
190
- )
191
- ref_wav = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Reference Audio File", value=None)
192
- exaggeration = gr.Slider(0.25, 2, step=.05, label="Exaggeration (Neutral = 0.5, extreme values can be unstable)", value=.5)
193
- cfg_weight = gr.Slider(0.0, 1, step=.05, label="CFG/Pace", value=0.5)
194
-
195
- with gr.Accordion("More options", open=False):
196
- seed_num = gr.Number(value=0, label="Random seed (0 for random)")
197
- temp = gr.Slider(0.05, 5, step=.05, label="temperature", value=.8)
198
- min_p = gr.Slider(0.00, 1.00, step=0.01, label="min_p || Newer Sampler. Recommend 0.02 > 0.1. Handles Higher Temperatures better. 0.00 Disables", value=0.05)
199
- top_p = gr.Slider(0.00, 1.00, step=0.01, label="top_p || Original Sampler. 1.0 Disables(recommended). Original 0.8", value=1.00)
200
- repetition_penalty = gr.Slider(1.00, 2.00, step=0.1, label="repetition_penalty", value=1.2)
201
-
202
- run_btn = gr.Button("Generate", variant="primary")
203
-
204
- with gr.Column():
205
- audio_output = gr.Audio(label="Output Audio")
206
-
207
- demo.load(fn=load_model, inputs=[])#, outputs=model_state)
208
-
209
- run_btn.click(
210
- fn=generate,
211
- inputs=[
212
- #model_state,
213
- text,
214
- ref_wav,
215
- exaggeration,
216
- temp,
217
- seed_num,
218
- cfg_weight,
219
- min_p,
220
- top_p,
221
- repetition_penalty,
222
- ],
223
- outputs=audio_output,
224
- )
225
-
226
- if __name__ == "__main__":
227
- demo.queue(
228
- max_size=50,
229
- default_concurrency_limit=1,
230
- ).launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/__init__.py DELETED
@@ -1,10 +0,0 @@
1
- try:
2
- from importlib.metadata import version
3
- except ImportError:
4
- from importlib_metadata import version # For Python <3.8
5
-
6
- __version__ = version("chatterbox-tts")
7
-
8
-
9
- from .tts import ChatterboxTTS
10
- from .vc import ChatterboxVC
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (391 Bytes)
 
chatterbox/src/chatterbox/__pycache__/tts.cpython-310.pyc DELETED
Binary file (17.4 kB)
 
chatterbox/src/chatterbox/__pycache__/vc.cpython-310.pyc DELETED
Binary file (7.16 kB)
 
chatterbox/src/chatterbox/models/__init__.py DELETED
File without changes
chatterbox/src/chatterbox/models/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (147 Bytes)
 
chatterbox/src/chatterbox/models/__pycache__/model_v2.cpython-310.pyc DELETED
Binary file (12.4 kB)
 
chatterbox/src/chatterbox/models/__pycache__/utils.cpython-310.pyc DELETED
Binary file (520 Bytes)
 
chatterbox/src/chatterbox/models/model_v2.py DELETED
@@ -1,405 +0,0 @@
1
- # Copyright (c) (Mddct: Dinghao Zhou)
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from dataclasses import dataclass
16
- from typing import Optional, Tuple
17
-
18
- import torch
19
- from einops import rearrange
20
-
21
- from s3tokenizer.model import Conv1d, LayerNorm, Linear, MultiHeadAttention
22
- from s3tokenizer.utils import make_non_pad_mask, mask_to_bias, onnx2torch
23
-
24
-
25
- @dataclass
26
- class ModelConfig:
27
- n_mels: int = 128
28
- n_audio_ctx: int = 1500
29
- n_audio_state: int = 1280
30
- n_audio_head: int = 20
31
- n_audio_layer: int = 6
32
- n_codebook_size: int = 3**8
33
-
34
- use_sdpa: bool = False
35
-
36
-
37
- def precompute_freqs_cis(dim: int,
38
- end: int,
39
- theta: float = 10000.0,
40
- scaling=None):
41
- freqs = 1.0 / (theta**(torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
42
- t = torch.arange(end, device=freqs.device) # type: ignore
43
- if scaling is not None:
44
- t = t * scaling
45
- freqs = torch.outer(t, freqs).float() # type: ignore
46
- freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
47
-
48
- return torch.cat((freqs_cis, freqs_cis), dim=-1)
49
-
50
-
51
- def apply_rotary_emb(
52
- xq: torch.Tensor,
53
- xk: torch.Tensor,
54
- freqs_cis: torch.Tensor,
55
- ) -> Tuple[torch.Tensor, torch.Tensor]:
56
- real = torch.view_as_real(freqs_cis)
57
- cos, sin = real[:, :, 0], real[:, :, 1]
58
- cos = cos.unsqueeze(0).unsqueeze(2)
59
- sin = sin.unsqueeze(0).unsqueeze(2)
60
-
61
- D = xq.shape[-1]
62
- half_l, half_r = xq[:, :, :, :D // 2], xq[:, :, :, D // 2:]
63
- xq_r = torch.cat((-half_r, half_l), dim=-1)
64
-
65
- D = xk.shape[-1]
66
-
67
- half_l, half_r = xk[:, :, :, :D // 2], xk[:, :, :, D // 2:]
68
- xk_r = torch.cat((-half_r, half_l), dim=-1)
69
-
70
- return xq * cos + xq_r * sin, xk * cos + xk_r * sin
71
-
72
-
73
- def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
74
- ndim = x.ndim
75
- assert 0 <= 1 < ndim
76
- assert freqs_cis.shape == (x.shape[1], x.shape[-1])
77
- shape = [
78
- d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)
79
- ]
80
- return freqs_cis.view(*shape)
81
-
82
-
83
- class FSQCodebook(torch.nn.Module):
84
-
85
- def __init__(self, dim: int, level: int = 3):
86
- super().__init__()
87
- self.project_down = torch.nn.Linear(dim, 8)
88
- self.level = level
89
- self.embed = None
90
-
91
- @torch.inference_mode()
92
- def preprocess(self, x: torch.Tensor) -> torch.Tensor:
93
- x = rearrange(x, "... d -> (...) d")
94
- return x
95
-
96
- @torch.inference_mode()
97
- def encode(self, x: torch.Tensor) -> torch.Tensor:
98
- x_shape = x.shape
99
- # pre-process
100
- x = self.preprocess(x)
101
- # quantize
102
- h = self.project_down(x).float()
103
- h = h.tanh()
104
- h = h * 0.9990000128746033
105
- h = h.round() + 1
106
- # h = ((self.level - 1) * h).round() # range [-k, k]
107
- powers = torch.pow(
108
- self.level,
109
- torch.arange(2**self.level, device=x.device, dtype=h.dtype))
110
- mu = torch.sum(h * powers.unsqueeze(0), dim=-1)
111
- ind = mu.reshape(x_shape[0], x_shape[1]).int()
112
- return ind
113
-
114
- @torch.inference_mode()
115
- def decode(self, embed_ind: torch.Tensor) -> torch.Tensor:
116
- raise NotImplementedError(
117
- 'There is no official up project component provided')
118
-
119
-
120
- class FSQVectorQuantization(torch.nn.Module):
121
- """Vector quantization implementation (inference-only).
122
- Args:
123
- dim (int): Dimension
124
- codebook_size (int): Codebook size
125
- """
126
-
127
- def __init__(
128
- self,
129
- dim: int,
130
- codebook_size: int,
131
- ):
132
- super().__init__()
133
- assert 3**8 == codebook_size
134
- self._codebook = FSQCodebook(dim=dim, level=3)
135
- self.codebook_size = codebook_size
136
-
137
- @property
138
- def codebook(self):
139
- return self._codebook.embed
140
-
141
- @torch.inference_mode()
142
- def encode(self, x: torch.Tensor) -> torch.Tensor:
143
- return self._codebook.encode(x)
144
-
145
- @torch.inference_mode()
146
- def decode(self, embed_ind: torch.Tensor) -> torch.Tensor:
147
- quantize = self._codebook.decode(embed_ind)
148
- quantize = rearrange(quantize, "b n d -> b d n")
149
- return quantize
150
-
151
-
152
- class FSMNMultiHeadAttention(MultiHeadAttention):
153
-
154
- def __init__(
155
- self,
156
- n_state: int,
157
- n_head: int,
158
- kernel_size: int = 31,
159
- use_sdpa: bool = False,
160
- ):
161
- super().__init__(n_state, n_head)
162
-
163
- self.fsmn_block = torch.nn.Conv1d(n_state,
164
- n_state,
165
- kernel_size,
166
- stride=1,
167
- padding=0,
168
- groups=n_state,
169
- bias=False)
170
- self.left_padding = (kernel_size - 1) // 2
171
- self.right_padding = kernel_size - 1 - self.left_padding
172
- self.pad_fn = torch.nn.ConstantPad1d(
173
- (self.left_padding, self.right_padding), 0.0)
174
-
175
- self.use_sdpa = use_sdpa
176
-
177
- def forward_fsmn(self,
178
- inputs: torch.Tensor,
179
- mask: Optional[torch.Tensor] = None):
180
- b, t, _, _ = inputs.size()
181
- inputs = inputs.view(b, t, -1)
182
- if mask is not None and mask.size(2) > 0: # time2 > 0
183
- inputs = inputs * mask
184
- x = inputs.transpose(1, 2)
185
- x = self.pad_fn(x)
186
- x = self.fsmn_block(x)
187
- x = x.transpose(1, 2)
188
- x += inputs
189
- return x * mask
190
-
191
- def qkv_attention(self,
192
- q: torch.Tensor,
193
- k: torch.Tensor,
194
- v: torch.Tensor,
195
- mask: Optional[torch.Tensor] = None,
196
- mask_pad: Optional[torch.Tensor] = None,
197
- freqs_cis: Optional[torch.Tensor] = None):
198
- _, _, D = q.shape
199
- scale = (D // self.n_head)**-0.25
200
- q = q.view(*q.shape[:2], self.n_head, -1)
201
- k = k.view(*k.shape[:2], self.n_head, -1)
202
- v = v.view(*v.shape[:2], self.n_head, -1)
203
-
204
- if freqs_cis is not None:
205
- q, k = apply_rotary_emb(q, k, freqs_cis=freqs_cis)
206
-
207
- fsm_memory = self.forward_fsmn(v, mask_pad)
208
-
209
- q = q.permute(0, 2, 1, 3) * scale
210
- v = v.permute(0, 2, 1, 3)
211
-
212
- if not self.use_sdpa:
213
- k = k.permute(0, 2, 3, 1) * scale
214
- qk = q @ k # (B, n_head, T, T)
215
- if mask is not None:
216
- qk = qk + mask
217
- qk = qk.float()
218
- w = torch.nn.functional.softmax(qk, dim=-1).to(q.dtype)
219
- return (w @ v).permute(
220
- 0, 2, 1, 3).flatten(start_dim=2), qk.detach(), fsm_memory
221
- else:
222
- k = k.permute(0, 2, 1, 3) * scale
223
- assert mask is not None
224
- output = torch.nn.functional.scaled_dot_product_attention(
225
- q,
226
- k,
227
- v,
228
- attn_mask=mask,
229
- dropout_p=0.,
230
- scale=1.,
231
- )
232
- output = (output.transpose(1,
233
- 2).contiguous().view(q.size(0), -1, D)
234
- ) # (batch, time1, d_model)
235
- return output, None, fsm_memory
236
-
237
- def forward(self,
238
- x: torch.Tensor,
239
- mask: Optional[torch.Tensor] = None,
240
- mask_pad: Optional[torch.Tensor] = None,
241
- freqs_cis: Optional[torch.Tensor] = None):
242
-
243
- q = self.query(x)
244
- k = self.key(x)
245
- v = self.value(x)
246
-
247
- wv, qk, fsm_memory = self.qkv_attention(q, k, v, mask, mask_pad,
248
- freqs_cis)
249
- return self.out(wv) + fsm_memory, qk
250
-
251
-
252
- class ResidualAttentionBlock(torch.nn.Module):
253
-
254
- def __init__(
255
- self,
256
- n_state: int,
257
- n_head: int,
258
- kernel_size: int = 31,
259
- use_sdpa: bool = False,
260
- ):
261
- super().__init__()
262
-
263
- self.attn = FSMNMultiHeadAttention(n_state,
264
- n_head,
265
- kernel_size,
266
- use_sdpa=use_sdpa)
267
- self.attn_ln = LayerNorm(n_state, eps=1e-6)
268
-
269
- n_mlp = n_state * 4
270
-
271
- self.mlp = torch.nn.Sequential(Linear(n_state, n_mlp), torch.nn.GELU(),
272
- Linear(n_mlp, n_state))
273
- self.mlp_ln = LayerNorm(n_state)
274
-
275
- def forward(
276
- self,
277
- x: torch.Tensor,
278
- mask: Optional[torch.Tensor] = None,
279
- mask_pad: Optional[torch.Tensor] = None,
280
- freqs_cis: Optional[torch.Tensor] = None,
281
- ):
282
- x = x + self.attn(
283
- self.attn_ln(x), mask=mask, mask_pad=mask_pad,
284
- freqs_cis=freqs_cis)[0]
285
-
286
- x = x + self.mlp(self.mlp_ln(x))
287
- return x
288
-
289
-
290
- class AudioEncoderV2(torch.nn.Module):
291
-
292
- def __init__(
293
- self,
294
- n_mels: int,
295
- n_state: int,
296
- n_head: int,
297
- n_layer: int,
298
- stride: int,
299
- use_sdpa: bool,
300
- ):
301
- super().__init__()
302
- self.stride = stride
303
-
304
- self.conv1 = Conv1d(n_mels,
305
- n_state,
306
- kernel_size=3,
307
- stride=stride,
308
- padding=1)
309
- self.conv2 = Conv1d(n_state,
310
- n_state,
311
- kernel_size=3,
312
- stride=2,
313
- padding=1)
314
- self.freqs_cis = precompute_freqs_cis(64, 1024 * 2)
315
- self.blocks = torch.nn.ModuleList([
316
- ResidualAttentionBlock(n_state, n_head, use_sdpa=use_sdpa)
317
- for _ in range(n_layer)
318
- ])
319
-
320
- def forward(self, x: torch.Tensor,
321
- x_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
322
- """
323
- x : torch.Tensor, shape = (batch_size, n_mels, T)
324
- the mel spectrogram of the audio
325
- x_len: torch.Tensor, shape = (batch_size,)
326
- length of each audio in x
327
- """
328
- mask = make_non_pad_mask(x_len).unsqueeze(1)
329
- x = torch.nn.functional.gelu(self.conv1(x * mask))
330
- x_len = (x_len + 2 - 1 * (3 - 1) - 1) // self.stride + 1
331
- mask = make_non_pad_mask(x_len).unsqueeze(1)
332
- x = torch.nn.functional.gelu(self.conv2(x * mask))
333
- x_len = (x_len + 2 - 1 * (3 - 1) - 1) // 2 + 1
334
- mask = make_non_pad_mask(x_len).unsqueeze(1)
335
- x = x.permute(0, 2, 1) # (B, T // 2, n_state)
336
- freqs_cis = self.freqs_cis.to(x.device)
337
- mask_pad = mask.transpose(1, 2)
338
- mask = mask_to_bias(mask, x.dtype)
339
-
340
- tmp = torch.view_as_real(freqs_cis)
341
- cos, sin = tmp[:, :, 0], tmp[:, :, 1]
342
-
343
- cos = torch.cat((cos, cos), dim=-1)
344
- sin = torch.cat((sin, sin), dim=-1)
345
- cos = cos.unsqueeze(0).unsqueeze(2)
346
- sin = sin.unsqueeze(0).unsqueeze(2)
347
-
348
- for block in self.blocks:
349
- x = block(x, mask.unsqueeze(1), mask_pad, freqs_cis[:x.size(1)])
350
-
351
- return x, x_len
352
-
353
-
354
- class S3TokenizerV2(torch.nn.Module):
355
- """S3 tokenizer v2 implementation (inference-only).
356
- Args:
357
- config (ModelConfig): Config
358
- """
359
-
360
- def __init__(self, name: str, config: ModelConfig = ModelConfig()):
361
- super().__init__()
362
- if 'v1' not in name:
363
- assert 'v2' in name
364
- # TODO(Mddct): make it configureable
365
- config.n_codebook_size = 3**8
366
- self.config = config
367
- self.encoder = AudioEncoderV2(
368
- self.config.n_mels,
369
- self.config.n_audio_state,
370
- self.config.n_audio_head,
371
- self.config.n_audio_layer,
372
- 2,
373
- self.config.use_sdpa,
374
- )
375
- self.quantizer = FSQVectorQuantization(
376
- self.config.n_audio_state,
377
- self.config.n_codebook_size,
378
- )
379
-
380
- def forward(self, mel: torch.Tensor,
381
- mel_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
382
- return self.quantize(mel, mel_len)
383
-
384
- @torch.inference_mode()
385
- def quantize(self, mel: torch.Tensor,
386
- mel_len: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
387
- hidden, code_len = self.encoder(mel, mel_len)
388
- code = self.quantizer.encode(hidden)
389
- return code, code_len
390
-
391
- @property
392
- def device(self):
393
- return next(self.parameters()).device
394
-
395
- def init_from_onnx(self, onnx_path: str):
396
- ckpt = onnx2torch(onnx_path, None, False)
397
- self.load_state_dict(ckpt, strict=True)
398
-
399
- def init_from_pt(self, ckpt_path: str):
400
- ckpt = torch.load(ckpt_path, map_location="cpu", mmap=True)
401
- self.load_state_dict(ckpt, strict=True)
402
-
403
- def freeze(self):
404
- for _, param in self.named_parameters():
405
- param.requires_grad = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/__init__.py DELETED
@@ -1,2 +0,0 @@
1
- from .s3gen import S3Token2Wav as S3Gen
2
- from .const import S3GEN_SR
 
 
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (239 Bytes)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/configs.cpython-310.pyc DELETED
Binary file (374 Bytes)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/const.cpython-310.pyc DELETED
Binary file (166 Bytes)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/decoder.cpython-310.pyc DELETED
Binary file (8.31 kB)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/f0_predictor.cpython-310.pyc DELETED
Binary file (1.37 kB)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/flow.cpython-310.pyc DELETED
Binary file (6.3 kB)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/flow_matching.cpython-310.pyc DELETED
Binary file (6.91 kB)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/hifigan.cpython-310.pyc DELETED
Binary file (13.8 kB)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/s3gen.cpython-310.pyc DELETED
Binary file (7.87 kB)
 
chatterbox/src/chatterbox/models/s3gen/__pycache__/xvector.cpython-310.pyc DELETED
Binary file (12.1 kB)
 
chatterbox/src/chatterbox/models/s3gen/configs.py DELETED
@@ -1,10 +0,0 @@
1
- from ..utils import AttrDict
2
-
3
- CFM_PARAMS = AttrDict({
4
- "sigma_min": 1e-06,
5
- "solver": "euler",
6
- "t_scheduler": "cosine",
7
- "training_cfg_rate": 0.2,
8
- "inference_cfg_rate": 0.7,
9
- "reg_loss_type": "l1"
10
- })
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/const.py DELETED
@@ -1 +0,0 @@
1
- S3GEN_SR = 24000
 
 
chatterbox/src/chatterbox/models/s3gen/decoder.py DELETED
@@ -1,317 +0,0 @@
1
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import torch
15
- import torch.nn as nn
16
- import torch.nn.functional as F
17
- from einops import pack, rearrange, repeat
18
-
19
- from .utils.mask import add_optional_chunk_mask
20
- from .matcha.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, \
21
- TimestepEmbedding, Upsample1D
22
- from .matcha.transformer import BasicTransformerBlock
23
-
24
-
25
- def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
26
- assert mask.dtype == torch.bool
27
- assert dtype in [torch.float32, torch.bfloat16, torch.float16]
28
- mask = mask.to(dtype)
29
- # attention mask bias
30
- # NOTE(Mddct): torch.finfo jit issues
31
- # chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
32
- mask = (1.0 - mask) * -1.0e+10
33
- return mask
34
-
35
-
36
-
37
- class Transpose(torch.nn.Module):
38
- def __init__(self, dim0: int, dim1: int):
39
- super().__init__()
40
- self.dim0 = dim0
41
- self.dim1 = dim1
42
-
43
- def forward(self, x: torch.Tensor):
44
- x = torch.transpose(x, self.dim0, self.dim1)
45
- return x
46
-
47
-
48
- class CausalBlock1D(Block1D):
49
- def __init__(self, dim: int, dim_out: int):
50
- super(CausalBlock1D, self).__init__(dim, dim_out)
51
- self.block = torch.nn.Sequential(
52
- CausalConv1d(dim, dim_out, 3),
53
- Transpose(1, 2),
54
- nn.LayerNorm(dim_out),
55
- Transpose(1, 2),
56
- nn.Mish(),
57
- )
58
-
59
- def forward(self, x: torch.Tensor, mask: torch.Tensor):
60
- output = self.block(x * mask)
61
- return output * mask
62
-
63
-
64
- class CausalResnetBlock1D(ResnetBlock1D):
65
- def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
66
- super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
67
- self.block1 = CausalBlock1D(dim, dim_out)
68
- self.block2 = CausalBlock1D(dim_out, dim_out)
69
-
70
-
71
- class CausalConv1d(torch.nn.Conv1d):
72
- def __init__(
73
- self,
74
- in_channels: int,
75
- out_channels: int,
76
- kernel_size: int,
77
- stride: int = 1,
78
- dilation: int = 1,
79
- groups: int = 1,
80
- bias: bool = True,
81
- padding_mode: str = 'zeros',
82
- device=None,
83
- dtype=None
84
- ) -> None:
85
- super(CausalConv1d, self).__init__(in_channels, out_channels,
86
- kernel_size, stride,
87
- padding=0, dilation=dilation,
88
- groups=groups, bias=bias,
89
- padding_mode=padding_mode,
90
- device=device, dtype=dtype)
91
- assert stride == 1
92
- self.causal_padding = (kernel_size - 1, 0)
93
-
94
- def forward(self, x: torch.Tensor):
95
- x = F.pad(x, self.causal_padding)
96
- x = super(CausalConv1d, self).forward(x)
97
- return x
98
-
99
-
100
- class ConditionalDecoder(nn.Module):
101
- def __init__(
102
- self,
103
- in_channels=320,
104
- out_channels=80,
105
- causal=True,
106
- channels=[256],
107
- dropout=0.0,
108
- attention_head_dim=64,
109
- n_blocks=4,
110
- num_mid_blocks=12,
111
- num_heads=8,
112
- act_fn="gelu",
113
- ):
114
- """
115
- This decoder requires an input with the same shape of the target. So, if your text content
116
- is shorter or longer than the outputs, please re-sampling it before feeding to the decoder.
117
- """
118
- super().__init__()
119
- channels = tuple(channels)
120
- self.in_channels = in_channels
121
- self.out_channels = out_channels
122
- self.causal = causal
123
- self.time_embeddings = SinusoidalPosEmb(in_channels)
124
- time_embed_dim = channels[0] * 4
125
- self.time_mlp = TimestepEmbedding(
126
- in_channels=in_channels,
127
- time_embed_dim=time_embed_dim,
128
- act_fn="silu",
129
- )
130
- self.down_blocks = nn.ModuleList([])
131
- self.mid_blocks = nn.ModuleList([])
132
- self.up_blocks = nn.ModuleList([])
133
-
134
- # NOTE jrm: `static_chunk_size` is missing?
135
- self.static_chunk_size = 0
136
-
137
- output_channel = in_channels
138
- for i in range(len(channels)): # pylint: disable=consider-using-enumerate
139
- input_channel = output_channel
140
- output_channel = channels[i]
141
- is_last = i == len(channels) - 1
142
- resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
143
- ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
144
- transformer_blocks = nn.ModuleList(
145
- [
146
- BasicTransformerBlock(
147
- dim=output_channel,
148
- num_attention_heads=num_heads,
149
- attention_head_dim=attention_head_dim,
150
- dropout=dropout,
151
- activation_fn=act_fn,
152
- )
153
- for _ in range(n_blocks)
154
- ]
155
- )
156
- downsample = (
157
- Downsample1D(output_channel) if not is_last else
158
- CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
159
- )
160
- self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
161
-
162
- for _ in range(num_mid_blocks):
163
- input_channel = channels[-1]
164
- out_channels = channels[-1]
165
- resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
166
- ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
167
-
168
- transformer_blocks = nn.ModuleList(
169
- [
170
- BasicTransformerBlock(
171
- dim=output_channel,
172
- num_attention_heads=num_heads,
173
- attention_head_dim=attention_head_dim,
174
- dropout=dropout,
175
- activation_fn=act_fn,
176
- )
177
- for _ in range(n_blocks)
178
- ]
179
- )
180
-
181
- self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
182
-
183
- channels = channels[::-1] + (channels[0],)
184
- for i in range(len(channels) - 1):
185
- input_channel = channels[i] * 2
186
- output_channel = channels[i + 1]
187
- is_last = i == len(channels) - 2
188
- resnet = CausalResnetBlock1D(
189
- dim=input_channel,
190
- dim_out=output_channel,
191
- time_emb_dim=time_embed_dim,
192
- ) if self.causal else ResnetBlock1D(
193
- dim=input_channel,
194
- dim_out=output_channel,
195
- time_emb_dim=time_embed_dim,
196
- )
197
- transformer_blocks = nn.ModuleList(
198
- [
199
- BasicTransformerBlock(
200
- dim=output_channel,
201
- num_attention_heads=num_heads,
202
- attention_head_dim=attention_head_dim,
203
- dropout=dropout,
204
- activation_fn=act_fn,
205
- )
206
- for _ in range(n_blocks)
207
- ]
208
- )
209
- upsample = (
210
- Upsample1D(output_channel, use_conv_transpose=True)
211
- if not is_last
212
- else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
213
- )
214
- self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
215
- self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
216
- self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
217
- self.initialize_weights()
218
-
219
- def initialize_weights(self):
220
- for m in self.modules():
221
- if isinstance(m, nn.Conv1d):
222
- nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
223
- if m.bias is not None:
224
- nn.init.constant_(m.bias, 0)
225
- elif isinstance(m, nn.GroupNorm):
226
- nn.init.constant_(m.weight, 1)
227
- nn.init.constant_(m.bias, 0)
228
- elif isinstance(m, nn.Linear):
229
- nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
230
- if m.bias is not None:
231
- nn.init.constant_(m.bias, 0)
232
-
233
- def forward(self, x, mask, mu, t, spks=None, cond=None):
234
- """Forward pass of the UNet1DConditional model.
235
-
236
- Args:
237
- x (torch.Tensor): shape (batch_size, in_channels, time)
238
- mask (_type_): shape (batch_size, 1, time)
239
- t (_type_): shape (batch_size)
240
- spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
241
- cond (_type_, optional): placeholder for future use. Defaults to None.
242
-
243
- Raises:
244
- ValueError: _description_
245
- ValueError: _description_
246
-
247
- Returns:
248
- _type_: _description_
249
- """
250
-
251
- t = self.time_embeddings(t).to(t.dtype)
252
- t = self.time_mlp(t)
253
-
254
- x = pack([x, mu], "b * t")[0]
255
-
256
- if spks is not None:
257
- spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
258
- x = pack([x, spks], "b * t")[0]
259
- if cond is not None:
260
- x = pack([x, cond], "b * t")[0]
261
-
262
- hiddens = []
263
- masks = [mask]
264
- for resnet, transformer_blocks, downsample in self.down_blocks:
265
- mask_down = masks[-1]
266
- x = resnet(x, mask_down, t)
267
- x = rearrange(x, "b c t -> b t c").contiguous()
268
- # attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
269
- attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
270
- attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
271
- for transformer_block in transformer_blocks:
272
- x = transformer_block(
273
- hidden_states=x,
274
- attention_mask=attn_mask,
275
- timestep=t,
276
- )
277
- x = rearrange(x, "b t c -> b c t").contiguous()
278
- hiddens.append(x) # Save hidden states for skip connections
279
- x = downsample(x * mask_down)
280
- masks.append(mask_down[:, :, ::2])
281
- masks = masks[:-1]
282
- mask_mid = masks[-1]
283
-
284
- for resnet, transformer_blocks in self.mid_blocks:
285
- x = resnet(x, mask_mid, t)
286
- x = rearrange(x, "b c t -> b t c").contiguous()
287
- # attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
288
- attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
289
- attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
290
- for transformer_block in transformer_blocks:
291
- x = transformer_block(
292
- hidden_states=x,
293
- attention_mask=attn_mask,
294
- timestep=t,
295
- )
296
- x = rearrange(x, "b t c -> b c t").contiguous()
297
-
298
- for resnet, transformer_blocks, upsample in self.up_blocks:
299
- mask_up = masks.pop()
300
- skip = hiddens.pop()
301
- x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
302
- x = resnet(x, mask_up, t)
303
- x = rearrange(x, "b c t -> b t c").contiguous()
304
- # attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
305
- attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
306
- attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
307
- for transformer_block in transformer_blocks:
308
- x = transformer_block(
309
- hidden_states=x,
310
- attention_mask=attn_mask,
311
- timestep=t,
312
- )
313
- x = rearrange(x, "b t c -> b c t").contiguous()
314
- x = upsample(x * mask_up)
315
- x = self.final_block(x, mask_up)
316
- output = self.final_proj(x * mask_up)
317
- return output * mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/f0_predictor.py DELETED
@@ -1,55 +0,0 @@
1
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import torch
15
- import torch.nn as nn
16
- from torch.nn.utils.parametrizations import weight_norm
17
-
18
-
19
- class ConvRNNF0Predictor(nn.Module):
20
- def __init__(self,
21
- num_class: int = 1,
22
- in_channels: int = 80,
23
- cond_channels: int = 512
24
- ):
25
- super().__init__()
26
-
27
- self.num_class = num_class
28
- self.condnet = nn.Sequential(
29
- weight_norm(
30
- nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
31
- ),
32
- nn.ELU(),
33
- weight_norm(
34
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
35
- ),
36
- nn.ELU(),
37
- weight_norm(
38
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
39
- ),
40
- nn.ELU(),
41
- weight_norm(
42
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
43
- ),
44
- nn.ELU(),
45
- weight_norm(
46
- nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
47
- ),
48
- nn.ELU(),
49
- )
50
- self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
51
-
52
- def forward(self, x: torch.Tensor) -> torch.Tensor:
53
- x = self.condnet(x)
54
- x = x.transpose(1, 2)
55
- return torch.abs(self.classifier(x).squeeze(-1))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/flow.py DELETED
@@ -1,282 +0,0 @@
1
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import logging
15
- import random
16
- from typing import Dict, Optional
17
- import torch
18
- import torch.nn as nn
19
- from torch.nn import functional as F
20
- from .utils.mask import make_pad_mask
21
- from .configs import CFM_PARAMS
22
-
23
-
24
- class MaskedDiffWithXvec(torch.nn.Module):
25
- def __init__(
26
- self,
27
- input_size: int = 512,
28
- output_size: int = 80,
29
- spk_embed_dim: int = 192,
30
- output_type: str = "mel",
31
- vocab_size: int = 4096,
32
- input_frame_rate: int = 50,
33
- only_mask_loss: bool = True,
34
- encoder: torch.nn.Module = None,
35
- length_regulator: torch.nn.Module = None,
36
- decoder: torch.nn.Module = None,
37
- decoder_conf: Dict = {
38
- 'in_channels': 240,
39
- 'out_channel': 80,
40
- 'spk_emb_dim': 80,
41
- 'n_spks': 1,
42
- 'cfm_params': CFM_PARAMS,
43
- 'decoder_params': {
44
- 'channels': [256, 256],
45
- 'dropout': 0.0,
46
- 'attention_head_dim': 64,
47
- 'n_blocks': 4,
48
- 'num_mid_blocks': 12,
49
- 'num_heads': 8,
50
- 'act_fn': 'gelu',
51
- }
52
- },
53
- mel_feat_conf: Dict = {
54
- 'n_fft': 1024,
55
- 'num_mels': 80,
56
- 'sampling_rate': 22050,
57
- 'hop_size': 256,
58
- 'win_size': 1024,
59
- 'fmin': 0,
60
- 'fmax': 8000
61
- }
62
- ):
63
- super().__init__()
64
- self.input_size = input_size
65
- self.output_size = output_size
66
- self.decoder_conf = decoder_conf
67
- self.mel_feat_conf = mel_feat_conf
68
- self.vocab_size = vocab_size
69
- self.output_type = output_type
70
- self.input_frame_rate = input_frame_rate
71
- logging.info(f"input frame rate={self.input_frame_rate}")
72
- self.input_embedding = nn.Embedding(vocab_size, input_size)
73
- self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
74
- self.encoder = encoder
75
- self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
76
- self.decoder = decoder
77
- self.length_regulator = length_regulator
78
- self.only_mask_loss = only_mask_loss
79
-
80
- def forward(
81
- self,
82
- batch: dict,
83
- device: torch.device,
84
- ) -> Dict[str, Optional[torch.Tensor]]:
85
- token = batch['speech_token'].to(device)
86
- token_len = batch['speech_token_len'].to(device)
87
- feat = batch['speech_feat'].to(device)
88
- feat_len = batch['speech_feat_len'].to(device)
89
- embedding = batch['embedding'].to(device)
90
-
91
- # xvec projection
92
- embedding = F.normalize(embedding, dim=1)
93
- embedding = self.spk_embed_affine_layer(embedding)
94
-
95
- # concat text and prompt_text
96
- mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device)
97
- token = self.input_embedding(torch.clamp(token, min=0)) * mask
98
-
99
- # text encode
100
- h, h_lengths = self.encoder(token, token_len)
101
- h = self.encoder_proj(h)
102
- h, h_lengths = self.length_regulator(h, feat_len)
103
-
104
- # get conditions
105
- conds = torch.zeros(feat.shape, device=token.device)
106
- for i, j in enumerate(feat_len):
107
- if random.random() < 0.5:
108
- continue
109
- index = random.randint(0, int(0.3 * j))
110
- conds[i, :index] = feat[i, :index]
111
- conds = conds.transpose(1, 2)
112
-
113
- mask = (~make_pad_mask(feat_len)).to(h)
114
- feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
115
- loss, _ = self.decoder.compute_loss(
116
- feat.transpose(1, 2).contiguous(),
117
- mask.unsqueeze(1),
118
- h.transpose(1, 2).contiguous(),
119
- embedding,
120
- cond=conds
121
- )
122
- return {'loss': loss}
123
-
124
- @torch.inference_mode()
125
- def inference(self,
126
- token,
127
- token_len,
128
- prompt_token,
129
- prompt_token_len,
130
- prompt_feat,
131
- prompt_feat_len,
132
- embedding,
133
- flow_cache):
134
- if self.fp16 is True:
135
- prompt_feat = prompt_feat.half()
136
- embedding = embedding.half()
137
-
138
- assert token.shape[0] == 1
139
- # xvec projection
140
- embedding = F.normalize(embedding, dim=1)
141
- embedding = self.spk_embed_affine_layer(embedding)
142
-
143
- # concat text and prompt_text
144
- token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
145
- token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
146
- mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
147
- token = self.input_embedding(torch.clamp(token, min=0)) * mask
148
-
149
- # text encode
150
- h, h_lengths = self.encoder(token, token_len)
151
- h = self.encoder_proj(h)
152
- mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
153
- h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
154
-
155
- # get conditions
156
- conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
157
- conds[:, :mel_len1] = prompt_feat
158
- conds = conds.transpose(1, 2)
159
-
160
- mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
161
- feat, flow_cache = self.decoder(
162
- mu=h.transpose(1, 2).contiguous(),
163
- mask=mask.unsqueeze(1),
164
- spks=embedding,
165
- cond=conds,
166
- n_timesteps=10,
167
- prompt_len=mel_len1,
168
- flow_cache=flow_cache
169
- )
170
- feat = feat[:, :, mel_len1:]
171
- assert feat.shape[2] == mel_len2
172
- return feat.float(), flow_cache
173
-
174
-
175
- class CausalMaskedDiffWithXvec(torch.nn.Module):
176
- def __init__(
177
- self,
178
- input_size: int = 512,
179
- output_size: int = 80,
180
- spk_embed_dim: int = 192,
181
- output_type: str = "mel",
182
- vocab_size: int = 6561,
183
- input_frame_rate: int = 25,
184
- only_mask_loss: bool = True,
185
- token_mel_ratio: int = 2,
186
- pre_lookahead_len: int = 3,
187
- encoder: torch.nn.Module = None,
188
- decoder: torch.nn.Module = None,
189
- decoder_conf: Dict = {
190
- 'in_channels': 240,
191
- 'out_channel': 80,
192
- 'spk_emb_dim': 80,
193
- 'n_spks': 1,
194
- 'cfm_params': CFM_PARAMS,
195
- 'decoder_params': {
196
- 'channels': [256, 256],
197
- 'dropout': 0.0,
198
- 'attention_head_dim': 64,
199
- 'n_blocks': 4,
200
- 'num_mid_blocks': 12,
201
- 'num_heads': 8,
202
- 'act_fn': 'gelu',
203
- }
204
- },
205
- mel_feat_conf: Dict = {
206
- 'n_fft': 1024,
207
- 'num_mels': 80,
208
- 'sampling_rate': 22050,
209
- 'hop_size': 256,
210
- 'win_size': 1024,
211
- 'fmin': 0,
212
- 'fmax': 8000
213
- }
214
- ):
215
- super().__init__()
216
- self.input_size = input_size
217
- self.output_size = output_size
218
- self.decoder_conf = decoder_conf
219
- self.mel_feat_conf = mel_feat_conf
220
- self.vocab_size = vocab_size
221
- self.output_type = output_type
222
- self.input_frame_rate = input_frame_rate
223
- logging.info(f"input frame rate={self.input_frame_rate}")
224
- self.input_embedding = nn.Embedding(vocab_size, input_size)
225
- self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
226
- self.encoder = encoder
227
- self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
228
- self.decoder = decoder
229
- self.only_mask_loss = only_mask_loss
230
- self.token_mel_ratio = token_mel_ratio
231
- self.pre_lookahead_len = pre_lookahead_len
232
-
233
- # FIXME: this was missing - just putting it in as false
234
- self.fp16 = False
235
-
236
- @torch.inference_mode()
237
- def inference(self,
238
- token,
239
- token_len,
240
- prompt_token,
241
- prompt_token_len,
242
- prompt_feat,
243
- prompt_feat_len,
244
- embedding,
245
- finalize):
246
- if self.fp16 is True:
247
- prompt_feat = prompt_feat.half()
248
- embedding = embedding.half()
249
-
250
- assert token.shape[0] == 1
251
- # xvec projection
252
- embedding = F.normalize(embedding, dim=1)
253
- embedding = self.spk_embed_affine_layer(embedding)
254
-
255
- # concat text and prompt_text
256
- token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
257
- mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
258
- token = self.input_embedding(torch.clamp(token, min=0)) * mask
259
-
260
- # text encode
261
- h, h_lengths = self.encoder(token, token_len)
262
- if finalize is False:
263
- h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
264
- mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
265
- h = self.encoder_proj(h)
266
-
267
- # get conditions
268
- conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
269
- conds[:, :mel_len1] = prompt_feat
270
- conds = conds.transpose(1, 2)
271
-
272
- mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
273
- feat, _ = self.decoder(
274
- mu=h.transpose(1, 2).contiguous(),
275
- mask=mask.unsqueeze(1),
276
- spks=embedding,
277
- cond=conds,
278
- n_timesteps=10
279
- )
280
- feat = feat[:, :, mel_len1:]
281
- assert feat.shape[2] == mel_len2
282
- return feat.float(), None # NOTE jrm: why are they returning None here?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/flow_matching.py DELETED
@@ -1,218 +0,0 @@
1
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import threading
15
- import torch
16
- import torch.nn.functional as F
17
- from .matcha.flow_matching import BASECFM
18
- from .configs import CFM_PARAMS
19
-
20
-
21
- class ConditionalCFM(BASECFM):
22
- def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
23
- super().__init__(
24
- n_feats=in_channels,
25
- cfm_params=cfm_params,
26
- n_spks=n_spks,
27
- spk_emb_dim=spk_emb_dim,
28
- )
29
- self.t_scheduler = cfm_params.t_scheduler
30
- self.training_cfg_rate = cfm_params.training_cfg_rate
31
- self.inference_cfg_rate = cfm_params.inference_cfg_rate
32
- in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0)
33
- # Just change the architecture of the estimator here
34
- self.estimator = estimator
35
- self.lock = threading.Lock()
36
-
37
- @torch.inference_mode()
38
- def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
39
- """Forward diffusion
40
-
41
- Args:
42
- mu (torch.Tensor): output of encoder
43
- shape: (batch_size, n_feats, mel_timesteps)
44
- mask (torch.Tensor): output_mask
45
- shape: (batch_size, 1, mel_timesteps)
46
- n_timesteps (int): number of diffusion steps
47
- temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
48
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
49
- shape: (batch_size, spk_emb_dim)
50
- cond: Not used but kept for future purposes
51
-
52
- Returns:
53
- sample: generated mel-spectrogram
54
- shape: (batch_size, n_feats, mel_timesteps)
55
- """
56
-
57
- z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature
58
- cache_size = flow_cache.shape[2]
59
- # fix prompt and overlap part mu and z
60
- if cache_size != 0:
61
- z[:, :, :cache_size] = flow_cache[:, :, :, 0]
62
- mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
63
- z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
64
- mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
65
- flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
66
-
67
- t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
68
- if self.t_scheduler == 'cosine':
69
- t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
70
- return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
71
-
72
- def solve_euler(self, x, t_span, mu, mask, spks, cond):
73
- """
74
- Fixed euler solver for ODEs.
75
- Args:
76
- x (torch.Tensor): random noise
77
- t_span (torch.Tensor): n_timesteps interpolated
78
- shape: (n_timesteps + 1,)
79
- mu (torch.Tensor): output of encoder
80
- shape: (batch_size, n_feats, mel_timesteps)
81
- mask (torch.Tensor): output_mask
82
- shape: (batch_size, 1, mel_timesteps)
83
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
84
- shape: (batch_size, spk_emb_dim)
85
- cond: Not used but kept for future purposes
86
- """
87
- t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
88
- t = t.unsqueeze(dim=0)
89
-
90
- # I am storing this because I can later plot it by putting a debugger here and saving it to a file
91
- # Or in future might add like a return_all_steps flag
92
- sol = []
93
-
94
- # Do not use concat, it may cause memory format changed and trt infer with wrong results!
95
- x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
96
- mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
97
- mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
98
- t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
99
- spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
100
- cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
101
- for step in range(1, len(t_span)):
102
- # Classifier-Free Guidance inference introduced in VoiceBox
103
- x_in[:] = x
104
- mask_in[:] = mask
105
- mu_in[0] = mu
106
- t_in[:] = t.unsqueeze(0)
107
- spks_in[0] = spks
108
- cond_in[0] = cond
109
- dphi_dt = self.forward_estimator(
110
- x_in, mask_in,
111
- mu_in, t_in,
112
- spks_in,
113
- cond_in
114
- )
115
- dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
116
- dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
117
- x = x + dt * dphi_dt
118
- t = t + dt
119
- sol.append(x)
120
- if step < len(t_span) - 1:
121
- dt = t_span[step + 1] - t
122
-
123
- return sol[-1].float()
124
-
125
- def forward_estimator(self, x, mask, mu, t, spks, cond):
126
- if isinstance(self.estimator, torch.nn.Module):
127
- return self.estimator.forward(x, mask, mu, t, spks, cond)
128
- else:
129
- with self.lock:
130
- self.estimator.set_input_shape('x', (2, 80, x.size(2)))
131
- self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
132
- self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
133
- self.estimator.set_input_shape('t', (2,))
134
- self.estimator.set_input_shape('spks', (2, 80))
135
- self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
136
- # run trt engine
137
- self.estimator.execute_v2([x.contiguous().data_ptr(),
138
- mask.contiguous().data_ptr(),
139
- mu.contiguous().data_ptr(),
140
- t.contiguous().data_ptr(),
141
- spks.contiguous().data_ptr(),
142
- cond.contiguous().data_ptr(),
143
- x.data_ptr()])
144
- return x
145
-
146
- def compute_loss(self, x1, mask, mu, spks=None, cond=None):
147
- """Computes diffusion loss
148
-
149
- Args:
150
- x1 (torch.Tensor): Target
151
- shape: (batch_size, n_feats, mel_timesteps)
152
- mask (torch.Tensor): target mask
153
- shape: (batch_size, 1, mel_timesteps)
154
- mu (torch.Tensor): output of encoder
155
- shape: (batch_size, n_feats, mel_timesteps)
156
- spks (torch.Tensor, optional): speaker embedding. Defaults to None.
157
- shape: (batch_size, spk_emb_dim)
158
-
159
- Returns:
160
- loss: conditional flow matching loss
161
- y: conditional flow
162
- shape: (batch_size, n_feats, mel_timesteps)
163
- """
164
- b, _, t = mu.shape
165
-
166
- # random timestep
167
- t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
168
- if self.t_scheduler == 'cosine':
169
- t = 1 - torch.cos(t * 0.5 * torch.pi)
170
- # sample noise p(x_0)
171
- z = torch.randn_like(x1)
172
-
173
- y = (1 - (1 - self.sigma_min) * t) * z + t * x1
174
- u = x1 - (1 - self.sigma_min) * z
175
-
176
- # during training, we randomly drop condition to trade off mode coverage and sample fidelity
177
- if self.training_cfg_rate > 0:
178
- cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate
179
- mu = mu * cfg_mask.view(-1, 1, 1)
180
- spks = spks * cfg_mask.view(-1, 1)
181
- cond = cond * cfg_mask.view(-1, 1, 1)
182
-
183
- pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
184
- loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
185
- return loss, y
186
-
187
-
188
- class CausalConditionalCFM(ConditionalCFM):
189
- def __init__(self, in_channels=240, cfm_params=CFM_PARAMS, n_spks=1, spk_emb_dim=80, estimator=None):
190
- super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
191
- self.rand_noise = torch.randn([1, 80, 50 * 300])
192
-
193
- @torch.inference_mode()
194
- def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
195
- """Forward diffusion
196
-
197
- Args:
198
- mu (torch.Tensor): output of encoder
199
- shape: (batch_size, n_feats, mel_timesteps)
200
- mask (torch.Tensor): output_mask
201
- shape: (batch_size, 1, mel_timesteps)
202
- n_timesteps (int): number of diffusion steps
203
- temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
204
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
205
- shape: (batch_size, spk_emb_dim)
206
- cond: Not used but kept for future purposes
207
-
208
- Returns:
209
- sample: generated mel-spectrogram
210
- shape: (batch_size, n_feats, mel_timesteps)
211
- """
212
-
213
- z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
214
- # fix prompt and overlap part mu and z
215
- t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
216
- if self.t_scheduler == 'cosine':
217
- t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
218
- return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/hifigan.py DELETED
@@ -1,474 +0,0 @@
1
- # jrm: adapted from CosyVoice/cosyvoice/hifigan/generator.py
2
- # most modules should be reusable, but I found their SineGen changed a git.
3
-
4
- # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
-
18
- """HIFI-GAN"""
19
-
20
- from typing import Dict, Optional, List
21
- import numpy as np
22
- from scipy.signal import get_window
23
- import torch
24
- import torch.nn.functional as F
25
- from torch.nn import Conv1d
26
- from torch.nn import ConvTranspose1d
27
- from torch.nn.utils import remove_weight_norm
28
- from torch.nn.utils.parametrizations import weight_norm
29
- from torch.distributions.uniform import Uniform
30
- from torch import nn, sin, pow
31
- from torch.nn import Parameter
32
-
33
-
34
- class Snake(nn.Module):
35
- '''
36
- Implementation of a sine-based periodic activation function
37
- Shape:
38
- - Input: (B, C, T)
39
- - Output: (B, C, T), same shape as the input
40
- Parameters:
41
- - alpha - trainable parameter
42
- References:
43
- - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
44
- https://arxiv.org/abs/2006.08195
45
- Examples:
46
- >>> a1 = snake(256)
47
- >>> x = torch.randn(256)
48
- >>> x = a1(x)
49
- '''
50
- def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
51
- '''
52
- Initialization.
53
- INPUT:
54
- - in_features: shape of the input
55
- - alpha: trainable parameter
56
- alpha is initialized to 1 by default, higher values = higher-frequency.
57
- alpha will be trained along with the rest of your model.
58
- '''
59
- super(Snake, self).__init__()
60
- self.in_features = in_features
61
-
62
- # initialize alpha
63
- self.alpha_logscale = alpha_logscale
64
- if self.alpha_logscale: # log scale alphas initialized to zeros
65
- self.alpha = Parameter(torch.zeros(in_features) * alpha)
66
- else: # linear scale alphas initialized to ones
67
- self.alpha = Parameter(torch.ones(in_features) * alpha)
68
-
69
- self.alpha.requires_grad = alpha_trainable
70
-
71
- self.no_div_by_zero = 0.000000001
72
-
73
- def forward(self, x):
74
- '''
75
- Forward pass of the function.
76
- Applies the function to the input elementwise.
77
- Snake ∶= x + 1/a * sin^2 (xa)
78
- '''
79
- alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
80
- if self.alpha_logscale:
81
- alpha = torch.exp(alpha)
82
- x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
83
-
84
- return x
85
-
86
-
87
-
88
- def get_padding(kernel_size, dilation=1):
89
- return int((kernel_size * dilation - dilation) / 2)
90
-
91
- def init_weights(m, mean=0.0, std=0.01):
92
- classname = m.__class__.__name__
93
- if classname.find("Conv") != -1:
94
- m.weight.data.normal_(mean, std)
95
-
96
-
97
- """hifigan based generator implementation.
98
-
99
- This code is modified from https://github.com/jik876/hifi-gan
100
- ,https://github.com/kan-bayashi/ParallelWaveGAN and
101
- https://github.com/NVIDIA/BigVGAN
102
-
103
- """
104
-
105
-
106
- class ResBlock(torch.nn.Module):
107
- """Residual block module in HiFiGAN/BigVGAN."""
108
- def __init__(
109
- self,
110
- channels: int = 512,
111
- kernel_size: int = 3,
112
- dilations: List[int] = [1, 3, 5],
113
- ):
114
- super(ResBlock, self).__init__()
115
- self.convs1 = nn.ModuleList()
116
- self.convs2 = nn.ModuleList()
117
-
118
- for dilation in dilations:
119
- self.convs1.append(
120
- weight_norm(
121
- Conv1d(
122
- channels,
123
- channels,
124
- kernel_size,
125
- 1,
126
- dilation=dilation,
127
- padding=get_padding(kernel_size, dilation)
128
- )
129
- )
130
- )
131
- self.convs2.append(
132
- weight_norm(
133
- Conv1d(
134
- channels,
135
- channels,
136
- kernel_size,
137
- 1,
138
- dilation=1,
139
- padding=get_padding(kernel_size, 1)
140
- )
141
- )
142
- )
143
- self.convs1.apply(init_weights)
144
- self.convs2.apply(init_weights)
145
- self.activations1 = nn.ModuleList([
146
- Snake(channels, alpha_logscale=False)
147
- for _ in range(len(self.convs1))
148
- ])
149
- self.activations2 = nn.ModuleList([
150
- Snake(channels, alpha_logscale=False)
151
- for _ in range(len(self.convs2))
152
- ])
153
-
154
- def forward(self, x: torch.Tensor) -> torch.Tensor:
155
- for idx in range(len(self.convs1)):
156
- xt = self.activations1[idx](x)
157
- xt = self.convs1[idx](xt)
158
- xt = self.activations2[idx](xt)
159
- xt = self.convs2[idx](xt)
160
- x = xt + x
161
- return x
162
-
163
- def remove_weight_norm(self):
164
- for idx in range(len(self.convs1)):
165
- remove_weight_norm(self.convs1[idx])
166
- remove_weight_norm(self.convs2[idx])
167
-
168
-
169
- class SineGen(torch.nn.Module):
170
- """ Definition of sine generator
171
- SineGen(samp_rate, harmonic_num = 0,
172
- sine_amp = 0.1, noise_std = 0.003,
173
- voiced_threshold = 0,
174
- flag_for_pulse=False)
175
- samp_rate: sampling rate in Hz
176
- harmonic_num: number of harmonic overtones (default 0)
177
- sine_amp: amplitude of sine-wavefrom (default 0.1)
178
- noise_std: std of Gaussian noise (default 0.003)
179
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
180
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
181
- Note: when flag_for_pulse is True, the first time step of a voiced
182
- segment is always sin(np.pi) or cos(0)
183
- """
184
-
185
- def __init__(self, samp_rate, harmonic_num=0,
186
- sine_amp=0.1, noise_std=0.003,
187
- voiced_threshold=0):
188
- super(SineGen, self).__init__()
189
- self.sine_amp = sine_amp
190
- self.noise_std = noise_std
191
- self.harmonic_num = harmonic_num
192
- self.sampling_rate = samp_rate
193
- self.voiced_threshold = voiced_threshold
194
-
195
- def _f02uv(self, f0):
196
- # generate uv signal
197
- uv = (f0 > self.voiced_threshold).type(torch.float32)
198
- return uv
199
-
200
- @torch.no_grad()
201
- def forward(self, f0):
202
- """
203
- :param f0: [B, 1, sample_len], Hz
204
- :return: [B, 1, sample_len]
205
- """
206
-
207
- F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
208
- for i in range(self.harmonic_num + 1):
209
- F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
210
-
211
- theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
212
- u_dist = Uniform(low=-np.pi, high=np.pi)
213
- phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
214
- phase_vec[:, 0, :] = 0
215
-
216
- # generate sine waveforms
217
- sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
218
-
219
- # generate uv signal
220
- uv = self._f02uv(f0)
221
-
222
- # noise: for unvoiced should be similar to sine_amp
223
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
224
- # . for voiced regions is self.noise_std
225
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
226
- noise = noise_amp * torch.randn_like(sine_waves)
227
-
228
- # first: set the unvoiced part to 0 by uv
229
- # then: additive noise
230
- sine_waves = sine_waves * uv + noise
231
- return sine_waves, uv, noise
232
-
233
-
234
- class SourceModuleHnNSF(torch.nn.Module):
235
- """ SourceModule for hn-nsf
236
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
237
- add_noise_std=0.003, voiced_threshod=0)
238
- sampling_rate: sampling_rate in Hz
239
- harmonic_num: number of harmonic above F0 (default: 0)
240
- sine_amp: amplitude of sine source signal (default: 0.1)
241
- add_noise_std: std of additive Gaussian noise (default: 0.003)
242
- note that amplitude of noise in unvoiced is decided
243
- by sine_amp
244
- voiced_threshold: threhold to set U/V given F0 (default: 0)
245
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
246
- F0_sampled (batchsize, length, 1)
247
- Sine_source (batchsize, length, 1)
248
- noise_source (batchsize, length 1)
249
- uv (batchsize, length, 1)
250
- """
251
-
252
- def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
253
- add_noise_std=0.003, voiced_threshod=0):
254
- super(SourceModuleHnNSF, self).__init__()
255
-
256
- self.sine_amp = sine_amp
257
- self.noise_std = add_noise_std
258
-
259
- # to produce sine waveforms
260
- self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
261
- sine_amp, add_noise_std, voiced_threshod)
262
-
263
- # to merge source harmonics into a single excitation
264
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
265
- self.l_tanh = torch.nn.Tanh()
266
-
267
- def forward(self, x):
268
- """
269
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
270
- F0_sampled (batchsize, length, 1)
271
- Sine_source (batchsize, length, 1)
272
- noise_source (batchsize, length 1)
273
- """
274
- # source for harmonic branch
275
- with torch.no_grad():
276
- sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
277
- sine_wavs = sine_wavs.transpose(1, 2)
278
- uv = uv.transpose(1, 2)
279
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
280
-
281
- # source for noise branch, in the same shape as uv
282
- noise = torch.randn_like(uv) * self.sine_amp / 3
283
- return sine_merge, noise, uv
284
-
285
-
286
- class HiFTGenerator(nn.Module):
287
- """
288
- HiFTNet Generator: Neural Source Filter + ISTFTNet
289
- https://arxiv.org/abs/2309.09493
290
- """
291
- def __init__(
292
- self,
293
- in_channels: int = 80,
294
- base_channels: int = 512,
295
- nb_harmonics: int = 8,
296
- sampling_rate: int = 22050,
297
- nsf_alpha: float = 0.1,
298
- nsf_sigma: float = 0.003,
299
- nsf_voiced_threshold: float = 10,
300
- upsample_rates: List[int] = [8, 8],
301
- upsample_kernel_sizes: List[int] = [16, 16],
302
- istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4},
303
- resblock_kernel_sizes: List[int] = [3, 7, 11],
304
- resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
305
- source_resblock_kernel_sizes: List[int] = [7, 11],
306
- source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]],
307
- lrelu_slope: float = 0.1,
308
- audio_limit: float = 0.99,
309
- f0_predictor: torch.nn.Module = None,
310
- ):
311
- super(HiFTGenerator, self).__init__()
312
-
313
- self.out_channels = 1
314
- self.nb_harmonics = nb_harmonics
315
- self.sampling_rate = sampling_rate
316
- self.istft_params = istft_params
317
- self.lrelu_slope = lrelu_slope
318
- self.audio_limit = audio_limit
319
-
320
- self.num_kernels = len(resblock_kernel_sizes)
321
- self.num_upsamples = len(upsample_rates)
322
- self.m_source = SourceModuleHnNSF(
323
- sampling_rate=sampling_rate,
324
- upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
325
- harmonic_num=nb_harmonics,
326
- sine_amp=nsf_alpha,
327
- add_noise_std=nsf_sigma,
328
- voiced_threshod=nsf_voiced_threshold)
329
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
330
-
331
- self.conv_pre = weight_norm(
332
- Conv1d(in_channels, base_channels, 7, 1, padding=3)
333
- )
334
-
335
- # Up
336
- self.ups = nn.ModuleList()
337
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
338
- self.ups.append(
339
- weight_norm(
340
- ConvTranspose1d(
341
- base_channels // (2**i),
342
- base_channels // (2**(i + 1)),
343
- k,
344
- u,
345
- padding=(k - u) // 2,
346
- )
347
- )
348
- )
349
-
350
- # Down
351
- self.source_downs = nn.ModuleList()
352
- self.source_resblocks = nn.ModuleList()
353
- downsample_rates = [1] + upsample_rates[::-1][:-1]
354
- downsample_cum_rates = np.cumprod(downsample_rates)
355
- for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
356
- if u == 1:
357
- self.source_downs.append(
358
- Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
359
- )
360
- else:
361
- self.source_downs.append(
362
- Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
363
- )
364
-
365
- self.source_resblocks.append(
366
- ResBlock(base_channels // (2 ** (i + 1)), k, d)
367
- )
368
-
369
- self.resblocks = nn.ModuleList()
370
- for i in range(len(self.ups)):
371
- ch = base_channels // (2**(i + 1))
372
- for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
373
- self.resblocks.append(ResBlock(ch, k, d))
374
-
375
- self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
376
- self.ups.apply(init_weights)
377
- self.conv_post.apply(init_weights)
378
- self.reflection_pad = nn.ReflectionPad1d((1, 0))
379
- self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
380
- self.f0_predictor = f0_predictor
381
-
382
- def remove_weight_norm(self):
383
- print('Removing weight norm...')
384
- for l in self.ups:
385
- remove_weight_norm(l)
386
- for l in self.resblocks:
387
- l.remove_weight_norm()
388
- remove_weight_norm(self.conv_pre)
389
- remove_weight_norm(self.conv_post)
390
- self.m_source.remove_weight_norm()
391
- for l in self.source_downs:
392
- remove_weight_norm(l)
393
- for l in self.source_resblocks:
394
- l.remove_weight_norm()
395
-
396
- def _stft(self, x):
397
- spec = torch.stft(
398
- x,
399
- self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
400
- return_complex=True)
401
- spec = torch.view_as_real(spec) # [B, F, TT, 2]
402
- return spec[..., 0], spec[..., 1]
403
-
404
- def _istft(self, magnitude, phase):
405
- magnitude = torch.clip(magnitude, max=1e2)
406
- real = magnitude * torch.cos(phase)
407
- img = magnitude * torch.sin(phase)
408
- inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
409
- self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
410
- return inverse_transform
411
-
412
- def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
413
- s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
414
- s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
415
-
416
- x = self.conv_pre(x)
417
- for i in range(self.num_upsamples):
418
- x = F.leaky_relu(x, self.lrelu_slope)
419
- x = self.ups[i](x)
420
-
421
- if i == self.num_upsamples - 1:
422
- x = self.reflection_pad(x)
423
-
424
- # fusion
425
- si = self.source_downs[i](s_stft)
426
- si = self.source_resblocks[i](si)
427
- x = x + si
428
-
429
- xs = None
430
- for j in range(self.num_kernels):
431
- if xs is None:
432
- xs = self.resblocks[i * self.num_kernels + j](x)
433
- else:
434
- xs += self.resblocks[i * self.num_kernels + j](x)
435
- x = xs / self.num_kernels
436
-
437
- x = F.leaky_relu(x)
438
- x = self.conv_post(x)
439
- magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
440
- phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
441
-
442
- x = self._istft(magnitude, phase)
443
- x = torch.clamp(x, -self.audio_limit, self.audio_limit)
444
- return x
445
-
446
- def forward(
447
- self,
448
- batch: dict,
449
- device: torch.device,
450
- ) -> Dict[str, Optional[torch.Tensor]]:
451
- speech_feat = batch['speech_feat'].transpose(1, 2).to(device)
452
- # mel->f0
453
- f0 = self.f0_predictor(speech_feat)
454
- # f0->source
455
- s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
456
- s, _, _ = self.m_source(s)
457
- s = s.transpose(1, 2)
458
- # mel+source->speech
459
- generated_speech = self.decode(x=speech_feat, s=s)
460
- return generated_speech, f0
461
-
462
- @torch.inference_mode()
463
- def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
464
- # mel->f0
465
- f0 = self.f0_predictor(speech_feat)
466
- # f0->source
467
- s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
468
- s, _, _ = self.m_source(s)
469
- s = s.transpose(1, 2)
470
- # use cache_source to avoid glitch
471
- if cache_source.shape[2] != 0:
472
- s[:, :, :cache_source.shape[2]] = cache_source
473
- generated_speech = self.decode(x=speech_feat, s=s)
474
- return generated_speech, s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/decoder.cpython-310.pyc DELETED
Binary file (11.1 kB)
 
chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/flow_matching.cpython-310.pyc DELETED
Binary file (4.52 kB)
 
chatterbox/src/chatterbox/models/s3gen/matcha/__pycache__/transformer.cpython-310.pyc DELETED
Binary file (9.35 kB)
 
chatterbox/src/chatterbox/models/s3gen/matcha/decoder.py DELETED
@@ -1,443 +0,0 @@
1
- import math
2
- from typing import Optional
3
-
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- from conformer import ConformerBlock
8
- from diffusers.models.activations import get_activation
9
- from einops import pack, rearrange, repeat
10
-
11
- from .transformer import BasicTransformerBlock
12
-
13
-
14
- class SinusoidalPosEmb(torch.nn.Module):
15
- def __init__(self, dim):
16
- super().__init__()
17
- self.dim = dim
18
- assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
19
-
20
- def forward(self, x, scale=1000):
21
- if x.ndim < 1:
22
- x = x.unsqueeze(0)
23
- device = x.device
24
- half_dim = self.dim // 2
25
- emb = math.log(10000) / (half_dim - 1)
26
- emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
27
- emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
28
- emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
29
- return emb
30
-
31
-
32
- class Block1D(torch.nn.Module):
33
- def __init__(self, dim, dim_out, groups=8):
34
- super().__init__()
35
- self.block = torch.nn.Sequential(
36
- torch.nn.Conv1d(dim, dim_out, 3, padding=1),
37
- torch.nn.GroupNorm(groups, dim_out),
38
- nn.Mish(),
39
- )
40
-
41
- def forward(self, x, mask):
42
- output = self.block(x * mask)
43
- return output * mask
44
-
45
-
46
- class ResnetBlock1D(torch.nn.Module):
47
- def __init__(self, dim, dim_out, time_emb_dim, groups=8):
48
- super().__init__()
49
- self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
50
-
51
- self.block1 = Block1D(dim, dim_out, groups=groups)
52
- self.block2 = Block1D(dim_out, dim_out, groups=groups)
53
-
54
- self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
55
-
56
- def forward(self, x, mask, time_emb):
57
- h = self.block1(x, mask)
58
- h += self.mlp(time_emb).unsqueeze(-1)
59
- h = self.block2(h, mask)
60
- output = h + self.res_conv(x * mask)
61
- return output
62
-
63
-
64
- class Downsample1D(nn.Module):
65
- def __init__(self, dim):
66
- super().__init__()
67
- self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
68
-
69
- def forward(self, x):
70
- return self.conv(x)
71
-
72
-
73
- class TimestepEmbedding(nn.Module):
74
- def __init__(
75
- self,
76
- in_channels: int,
77
- time_embed_dim: int,
78
- act_fn: str = "silu",
79
- out_dim: int = None,
80
- post_act_fn: Optional[str] = None,
81
- cond_proj_dim=None,
82
- ):
83
- super().__init__()
84
-
85
- self.linear_1 = nn.Linear(in_channels, time_embed_dim)
86
-
87
- if cond_proj_dim is not None:
88
- self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
89
- else:
90
- self.cond_proj = None
91
-
92
- self.act = get_activation(act_fn)
93
-
94
- if out_dim is not None:
95
- time_embed_dim_out = out_dim
96
- else:
97
- time_embed_dim_out = time_embed_dim
98
- self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
99
-
100
- if post_act_fn is None:
101
- self.post_act = None
102
- else:
103
- self.post_act = get_activation(post_act_fn)
104
-
105
- def forward(self, sample, condition=None):
106
- if condition is not None:
107
- sample = sample + self.cond_proj(condition)
108
- sample = self.linear_1(sample)
109
-
110
- if self.act is not None:
111
- sample = self.act(sample)
112
-
113
- sample = self.linear_2(sample)
114
-
115
- if self.post_act is not None:
116
- sample = self.post_act(sample)
117
- return sample
118
-
119
-
120
- class Upsample1D(nn.Module):
121
- """A 1D upsampling layer with an optional convolution.
122
-
123
- Parameters:
124
- channels (`int`):
125
- number of channels in the inputs and outputs.
126
- use_conv (`bool`, default `False`):
127
- option to use a convolution.
128
- use_conv_transpose (`bool`, default `False`):
129
- option to use a convolution transpose.
130
- out_channels (`int`, optional):
131
- number of output channels. Defaults to `channels`.
132
- """
133
-
134
- def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
135
- super().__init__()
136
- self.channels = channels
137
- self.out_channels = out_channels or channels
138
- self.use_conv = use_conv
139
- self.use_conv_transpose = use_conv_transpose
140
- self.name = name
141
-
142
- self.conv = None
143
- if use_conv_transpose:
144
- self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
145
- elif use_conv:
146
- self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
147
-
148
- def forward(self, inputs):
149
- assert inputs.shape[1] == self.channels
150
- if self.use_conv_transpose:
151
- return self.conv(inputs)
152
-
153
- outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
154
-
155
- if self.use_conv:
156
- outputs = self.conv(outputs)
157
-
158
- return outputs
159
-
160
-
161
- class ConformerWrapper(ConformerBlock):
162
- def __init__( # pylint: disable=useless-super-delegation
163
- self,
164
- *,
165
- dim,
166
- dim_head=64,
167
- heads=8,
168
- ff_mult=4,
169
- conv_expansion_factor=2,
170
- conv_kernel_size=31,
171
- attn_dropout=0,
172
- ff_dropout=0,
173
- conv_dropout=0,
174
- conv_causal=False,
175
- ):
176
- super().__init__(
177
- dim=dim,
178
- dim_head=dim_head,
179
- heads=heads,
180
- ff_mult=ff_mult,
181
- conv_expansion_factor=conv_expansion_factor,
182
- conv_kernel_size=conv_kernel_size,
183
- attn_dropout=attn_dropout,
184
- ff_dropout=ff_dropout,
185
- conv_dropout=conv_dropout,
186
- conv_causal=conv_causal,
187
- )
188
-
189
- def forward(
190
- self,
191
- hidden_states,
192
- attention_mask,
193
- encoder_hidden_states=None,
194
- encoder_attention_mask=None,
195
- timestep=None,
196
- ):
197
- return super().forward(x=hidden_states, mask=attention_mask.bool())
198
-
199
-
200
- class Decoder(nn.Module):
201
- def __init__(
202
- self,
203
- in_channels,
204
- out_channels,
205
- channels=(256, 256),
206
- dropout=0.05,
207
- attention_head_dim=64,
208
- n_blocks=1,
209
- num_mid_blocks=2,
210
- num_heads=4,
211
- act_fn="snake",
212
- down_block_type="transformer",
213
- mid_block_type="transformer",
214
- up_block_type="transformer",
215
- ):
216
- super().__init__()
217
- channels = tuple(channels)
218
- self.in_channels = in_channels
219
- self.out_channels = out_channels
220
-
221
- self.time_embeddings = SinusoidalPosEmb(in_channels)
222
- time_embed_dim = channels[0] * 4
223
- self.time_mlp = TimestepEmbedding(
224
- in_channels=in_channels,
225
- time_embed_dim=time_embed_dim,
226
- act_fn="silu",
227
- )
228
-
229
- self.down_blocks = nn.ModuleList([])
230
- self.mid_blocks = nn.ModuleList([])
231
- self.up_blocks = nn.ModuleList([])
232
-
233
- output_channel = in_channels
234
- for i in range(len(channels)): # pylint: disable=consider-using-enumerate
235
- input_channel = output_channel
236
- output_channel = channels[i]
237
- is_last = i == len(channels) - 1
238
- resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
239
- transformer_blocks = nn.ModuleList(
240
- [
241
- self.get_block(
242
- down_block_type,
243
- output_channel,
244
- attention_head_dim,
245
- num_heads,
246
- dropout,
247
- act_fn,
248
- )
249
- for _ in range(n_blocks)
250
- ]
251
- )
252
- downsample = (
253
- Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
254
- )
255
-
256
- self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
257
-
258
- for i in range(num_mid_blocks):
259
- input_channel = channels[-1]
260
- out_channels = channels[-1]
261
-
262
- resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
263
-
264
- transformer_blocks = nn.ModuleList(
265
- [
266
- self.get_block(
267
- mid_block_type,
268
- output_channel,
269
- attention_head_dim,
270
- num_heads,
271
- dropout,
272
- act_fn,
273
- )
274
- for _ in range(n_blocks)
275
- ]
276
- )
277
-
278
- self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
279
-
280
- channels = channels[::-1] + (channels[0],)
281
- for i in range(len(channels) - 1):
282
- input_channel = channels[i]
283
- output_channel = channels[i + 1]
284
- is_last = i == len(channels) - 2
285
-
286
- resnet = ResnetBlock1D(
287
- dim=2 * input_channel,
288
- dim_out=output_channel,
289
- time_emb_dim=time_embed_dim,
290
- )
291
- transformer_blocks = nn.ModuleList(
292
- [
293
- self.get_block(
294
- up_block_type,
295
- output_channel,
296
- attention_head_dim,
297
- num_heads,
298
- dropout,
299
- act_fn,
300
- )
301
- for _ in range(n_blocks)
302
- ]
303
- )
304
- upsample = (
305
- Upsample1D(output_channel, use_conv_transpose=True)
306
- if not is_last
307
- else nn.Conv1d(output_channel, output_channel, 3, padding=1)
308
- )
309
-
310
- self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
311
-
312
- self.final_block = Block1D(channels[-1], channels[-1])
313
- self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
314
-
315
- self.initialize_weights()
316
- # nn.init.normal_(self.final_proj.weight)
317
-
318
- @staticmethod
319
- def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
320
- if block_type == "conformer":
321
- block = ConformerWrapper(
322
- dim=dim,
323
- dim_head=attention_head_dim,
324
- heads=num_heads,
325
- ff_mult=1,
326
- conv_expansion_factor=2,
327
- ff_dropout=dropout,
328
- attn_dropout=dropout,
329
- conv_dropout=dropout,
330
- conv_kernel_size=31,
331
- )
332
- elif block_type == "transformer":
333
- block = BasicTransformerBlock(
334
- dim=dim,
335
- num_attention_heads=num_heads,
336
- attention_head_dim=attention_head_dim,
337
- dropout=dropout,
338
- activation_fn=act_fn,
339
- )
340
- else:
341
- raise ValueError(f"Unknown block type {block_type}")
342
-
343
- return block
344
-
345
- def initialize_weights(self):
346
- for m in self.modules():
347
- if isinstance(m, nn.Conv1d):
348
- nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
349
-
350
- if m.bias is not None:
351
- nn.init.constant_(m.bias, 0)
352
-
353
- elif isinstance(m, nn.GroupNorm):
354
- nn.init.constant_(m.weight, 1)
355
- nn.init.constant_(m.bias, 0)
356
-
357
- elif isinstance(m, nn.Linear):
358
- nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
359
-
360
- if m.bias is not None:
361
- nn.init.constant_(m.bias, 0)
362
-
363
- def forward(self, x, mask, mu, t, spks=None, cond=None):
364
- """Forward pass of the UNet1DConditional model.
365
-
366
- Args:
367
- x (torch.Tensor): shape (batch_size, in_channels, time)
368
- mask (_type_): shape (batch_size, 1, time)
369
- t (_type_): shape (batch_size)
370
- spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
371
- cond (_type_, optional): placeholder for future use. Defaults to None.
372
-
373
- Raises:
374
- ValueError: _description_
375
- ValueError: _description_
376
-
377
- Returns:
378
- _type_: _description_
379
- """
380
-
381
- t = self.time_embeddings(t)
382
- t = self.time_mlp(t)
383
-
384
- x = pack([x, mu], "b * t")[0]
385
-
386
- if spks is not None:
387
- spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
388
- x = pack([x, spks], "b * t")[0]
389
-
390
- hiddens = []
391
- masks = [mask]
392
- for resnet, transformer_blocks, downsample in self.down_blocks:
393
- mask_down = masks[-1]
394
- x = resnet(x, mask_down, t)
395
- x = rearrange(x, "b c t -> b t c")
396
- mask_down = rearrange(mask_down, "b 1 t -> b t")
397
- for transformer_block in transformer_blocks:
398
- x = transformer_block(
399
- hidden_states=x,
400
- attention_mask=mask_down,
401
- timestep=t,
402
- )
403
- x = rearrange(x, "b t c -> b c t")
404
- mask_down = rearrange(mask_down, "b t -> b 1 t")
405
- hiddens.append(x) # Save hidden states for skip connections
406
- x = downsample(x * mask_down)
407
- masks.append(mask_down[:, :, ::2])
408
-
409
- masks = masks[:-1]
410
- mask_mid = masks[-1]
411
-
412
- for resnet, transformer_blocks in self.mid_blocks:
413
- x = resnet(x, mask_mid, t)
414
- x = rearrange(x, "b c t -> b t c")
415
- mask_mid = rearrange(mask_mid, "b 1 t -> b t")
416
- for transformer_block in transformer_blocks:
417
- x = transformer_block(
418
- hidden_states=x,
419
- attention_mask=mask_mid,
420
- timestep=t,
421
- )
422
- x = rearrange(x, "b t c -> b c t")
423
- mask_mid = rearrange(mask_mid, "b t -> b 1 t")
424
-
425
- for resnet, transformer_blocks, upsample in self.up_blocks:
426
- mask_up = masks.pop()
427
- x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
428
- x = rearrange(x, "b c t -> b t c")
429
- mask_up = rearrange(mask_up, "b 1 t -> b t")
430
- for transformer_block in transformer_blocks:
431
- x = transformer_block(
432
- hidden_states=x,
433
- attention_mask=mask_up,
434
- timestep=t,
435
- )
436
- x = rearrange(x, "b t c -> b c t")
437
- mask_up = rearrange(mask_up, "b t -> b 1 t")
438
- x = upsample(x * mask_up)
439
-
440
- x = self.final_block(x, mask_up)
441
- output = self.final_proj(x * mask_up)
442
-
443
- return output * mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/matcha/flow_matching.py DELETED
@@ -1,129 +0,0 @@
1
- from abc import ABC
2
-
3
- import torch
4
- import torch.nn.functional as F
5
-
6
- from .decoder import Decoder
7
-
8
-
9
- class BASECFM(torch.nn.Module, ABC):
10
- def __init__(
11
- self,
12
- n_feats,
13
- cfm_params,
14
- n_spks=1,
15
- spk_emb_dim=128,
16
- ):
17
- super().__init__()
18
- self.n_feats = n_feats
19
- self.n_spks = n_spks
20
- self.spk_emb_dim = spk_emb_dim
21
- self.solver = cfm_params.solver
22
- if hasattr(cfm_params, "sigma_min"):
23
- self.sigma_min = cfm_params.sigma_min
24
- else:
25
- self.sigma_min = 1e-4
26
-
27
- self.estimator = None
28
-
29
- @torch.inference_mode()
30
- def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
31
- """Forward diffusion
32
-
33
- Args:
34
- mu (torch.Tensor): output of encoder
35
- shape: (batch_size, n_feats, mel_timesteps)
36
- mask (torch.Tensor): output_mask
37
- shape: (batch_size, 1, mel_timesteps)
38
- n_timesteps (int): number of diffusion steps
39
- temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
40
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
41
- shape: (batch_size, spk_emb_dim)
42
- cond: Not used but kept for future purposes
43
-
44
- Returns:
45
- sample: generated mel-spectrogram
46
- shape: (batch_size, n_feats, mel_timesteps)
47
- """
48
- z = torch.randn_like(mu) * temperature
49
- t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
50
- return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
51
-
52
- def solve_euler(self, x, t_span, mu, mask, spks, cond):
53
- """
54
- Fixed euler solver for ODEs.
55
- Args:
56
- x (torch.Tensor): random noise
57
- t_span (torch.Tensor): n_timesteps interpolated
58
- shape: (n_timesteps + 1,)
59
- mu (torch.Tensor): output of encoder
60
- shape: (batch_size, n_feats, mel_timesteps)
61
- mask (torch.Tensor): output_mask
62
- shape: (batch_size, 1, mel_timesteps)
63
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
64
- shape: (batch_size, spk_emb_dim)
65
- cond: Not used but kept for future purposes
66
- """
67
- t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
68
-
69
- # I am storing this because I can later plot it by putting a debugger here and saving it to a file
70
- # Or in future might add like a return_all_steps flag
71
- sol = []
72
-
73
- for step in range(1, len(t_span)):
74
- dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
75
-
76
- x = x + dt * dphi_dt
77
- t = t + dt
78
- sol.append(x)
79
- if step < len(t_span) - 1:
80
- dt = t_span[step + 1] - t
81
-
82
- return sol[-1]
83
-
84
- def compute_loss(self, x1, mask, mu, spks=None, cond=None):
85
- """Computes diffusion loss
86
-
87
- Args:
88
- x1 (torch.Tensor): Target
89
- shape: (batch_size, n_feats, mel_timesteps)
90
- mask (torch.Tensor): target mask
91
- shape: (batch_size, 1, mel_timesteps)
92
- mu (torch.Tensor): output of encoder
93
- shape: (batch_size, n_feats, mel_timesteps)
94
- spks (torch.Tensor, optional): speaker embedding. Defaults to None.
95
- shape: (batch_size, spk_emb_dim)
96
-
97
- Returns:
98
- loss: conditional flow matching loss
99
- y: conditional flow
100
- shape: (batch_size, n_feats, mel_timesteps)
101
- """
102
- b, _, t = mu.shape
103
-
104
- # random timestep
105
- t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
106
- # sample noise p(x_0)
107
- z = torch.randn_like(x1)
108
-
109
- y = (1 - (1 - self.sigma_min) * t) * z + t * x1
110
- u = x1 - (1 - self.sigma_min) * z
111
-
112
- loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / (
113
- torch.sum(mask) * u.shape[1]
114
- )
115
- return loss, y
116
-
117
-
118
- class CFM(BASECFM):
119
- def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64):
120
- super().__init__(
121
- n_feats=in_channels,
122
- cfm_params=cfm_params,
123
- n_spks=n_spks,
124
- spk_emb_dim=spk_emb_dim,
125
- )
126
-
127
- in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0)
128
- # Just change the architecture of the estimator here
129
- self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/matcha/text_encoder.py DELETED
@@ -1,413 +0,0 @@
1
- """ from https://github.com/jaywalnut310/glow-tts """
2
-
3
- import math
4
-
5
- import torch
6
- import torch.nn as nn
7
- from einops import rearrange
8
-
9
-
10
- def sequence_mask(length, max_length=None):
11
- if max_length is None:
12
- max_length = length.max()
13
- x = torch.arange(max_length, dtype=length.dtype, device=length.device)
14
- return x.unsqueeze(0) < length.unsqueeze(1)
15
-
16
-
17
-
18
- class LayerNorm(nn.Module):
19
- def __init__(self, channels, eps=1e-4):
20
- super().__init__()
21
- self.channels = channels
22
- self.eps = eps
23
-
24
- self.gamma = torch.nn.Parameter(torch.ones(channels))
25
- self.beta = torch.nn.Parameter(torch.zeros(channels))
26
-
27
- def forward(self, x):
28
- n_dims = len(x.shape)
29
- mean = torch.mean(x, 1, keepdim=True)
30
- variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
31
-
32
- x = (x - mean) * torch.rsqrt(variance + self.eps)
33
-
34
- shape = [1, -1] + [1] * (n_dims - 2)
35
- x = x * self.gamma.view(*shape) + self.beta.view(*shape)
36
- return x
37
-
38
-
39
- class ConvReluNorm(nn.Module):
40
- def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
41
- super().__init__()
42
- self.in_channels = in_channels
43
- self.hidden_channels = hidden_channels
44
- self.out_channels = out_channels
45
- self.kernel_size = kernel_size
46
- self.n_layers = n_layers
47
- self.p_dropout = p_dropout
48
-
49
- self.conv_layers = torch.nn.ModuleList()
50
- self.norm_layers = torch.nn.ModuleList()
51
- self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
52
- self.norm_layers.append(LayerNorm(hidden_channels))
53
- self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
54
- for _ in range(n_layers - 1):
55
- self.conv_layers.append(
56
- torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
57
- )
58
- self.norm_layers.append(LayerNorm(hidden_channels))
59
- self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
60
- self.proj.weight.data.zero_()
61
- self.proj.bias.data.zero_()
62
-
63
- def forward(self, x, x_mask):
64
- x_org = x
65
- for i in range(self.n_layers):
66
- x = self.conv_layers[i](x * x_mask)
67
- x = self.norm_layers[i](x)
68
- x = self.relu_drop(x)
69
- x = x_org + self.proj(x)
70
- return x * x_mask
71
-
72
-
73
- class DurationPredictor(nn.Module):
74
- def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
75
- super().__init__()
76
- self.in_channels = in_channels
77
- self.filter_channels = filter_channels
78
- self.p_dropout = p_dropout
79
-
80
- self.drop = torch.nn.Dropout(p_dropout)
81
- self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
82
- self.norm_1 = LayerNorm(filter_channels)
83
- self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
84
- self.norm_2 = LayerNorm(filter_channels)
85
- self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
86
-
87
- def forward(self, x, x_mask):
88
- x = self.conv_1(x * x_mask)
89
- x = torch.relu(x)
90
- x = self.norm_1(x)
91
- x = self.drop(x)
92
- x = self.conv_2(x * x_mask)
93
- x = torch.relu(x)
94
- x = self.norm_2(x)
95
- x = self.drop(x)
96
- x = self.proj(x * x_mask)
97
- return x * x_mask
98
-
99
-
100
- class RotaryPositionalEmbeddings(nn.Module):
101
- """
102
- ## RoPE module
103
-
104
- Rotary encoding transforms pairs of features by rotating in the 2D plane.
105
- That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
106
- Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
107
- by an angle depending on the position of the token.
108
- """
109
-
110
- def __init__(self, d: int, base: int = 10_000):
111
- r"""
112
- * `d` is the number of features $d$
113
- * `base` is the constant used for calculating $\Theta$
114
- """
115
- super().__init__()
116
-
117
- self.base = base
118
- self.d = int(d)
119
- self.cos_cached = None
120
- self.sin_cached = None
121
-
122
- def _build_cache(self, x: torch.Tensor):
123
- r"""
124
- Cache $\cos$ and $\sin$ values
125
- """
126
- # Return if cache is already built
127
- if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
128
- return
129
-
130
- # Get sequence length
131
- seq_len = x.shape[0]
132
-
133
- # $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
134
- theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
135
-
136
- # Create position indexes `[0, 1, ..., seq_len - 1]`
137
- seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
138
-
139
- # Calculate the product of position index and $\theta_i$
140
- idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
141
-
142
- # Concatenate so that for row $m$ we have
143
- # $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
144
- idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
145
-
146
- # Cache them
147
- self.cos_cached = idx_theta2.cos()[:, None, None, :]
148
- self.sin_cached = idx_theta2.sin()[:, None, None, :]
149
-
150
- def _neg_half(self, x: torch.Tensor):
151
- # $\frac{d}{2}$
152
- d_2 = self.d // 2
153
-
154
- # Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
155
- return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
156
-
157
- def forward(self, x: torch.Tensor):
158
- """
159
- * `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
160
- """
161
- # Cache $\cos$ and $\sin$ values
162
- x = rearrange(x, "b h t d -> t b h d")
163
-
164
- self._build_cache(x)
165
-
166
- # Split the features, we can choose to apply rotary embeddings only to a partial set of features.
167
- x_rope, x_pass = x[..., : self.d], x[..., self.d :]
168
-
169
- # Calculate
170
- # $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
171
- neg_half_x = self._neg_half(x_rope)
172
-
173
- x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
174
-
175
- return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
176
-
177
-
178
- class MultiHeadAttention(nn.Module):
179
- def __init__(
180
- self,
181
- channels,
182
- out_channels,
183
- n_heads,
184
- heads_share=True,
185
- p_dropout=0.0,
186
- proximal_bias=False,
187
- proximal_init=False,
188
- ):
189
- super().__init__()
190
- assert channels % n_heads == 0
191
-
192
- self.channels = channels
193
- self.out_channels = out_channels
194
- self.n_heads = n_heads
195
- self.heads_share = heads_share
196
- self.proximal_bias = proximal_bias
197
- self.p_dropout = p_dropout
198
- self.attn = None
199
-
200
- self.k_channels = channels // n_heads
201
- self.conv_q = torch.nn.Conv1d(channels, channels, 1)
202
- self.conv_k = torch.nn.Conv1d(channels, channels, 1)
203
- self.conv_v = torch.nn.Conv1d(channels, channels, 1)
204
-
205
- # from https://nn.labml.ai/transformers/rope/index.html
206
- self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
207
- self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
208
-
209
- self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
210
- self.drop = torch.nn.Dropout(p_dropout)
211
-
212
- torch.nn.init.xavier_uniform_(self.conv_q.weight)
213
- torch.nn.init.xavier_uniform_(self.conv_k.weight)
214
- if proximal_init:
215
- self.conv_k.weight.data.copy_(self.conv_q.weight.data)
216
- self.conv_k.bias.data.copy_(self.conv_q.bias.data)
217
- torch.nn.init.xavier_uniform_(self.conv_v.weight)
218
-
219
- def forward(self, x, c, attn_mask=None):
220
- q = self.conv_q(x)
221
- k = self.conv_k(c)
222
- v = self.conv_v(c)
223
-
224
- x, self.attn = self.attention(q, k, v, mask=attn_mask)
225
-
226
- x = self.conv_o(x)
227
- return x
228
-
229
- def attention(self, query, key, value, mask=None):
230
- b, d, t_s, t_t = (*key.size(), query.size(2))
231
- query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
232
- key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
233
- value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
234
-
235
- query = self.query_rotary_pe(query)
236
- key = self.key_rotary_pe(key)
237
-
238
- scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
239
-
240
- if self.proximal_bias:
241
- assert t_s == t_t, "Proximal bias is only available for self-attention."
242
- scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
243
- if mask is not None:
244
- scores = scores.masked_fill(mask == 0, -1e4)
245
- p_attn = torch.nn.functional.softmax(scores, dim=-1)
246
- p_attn = self.drop(p_attn)
247
- output = torch.matmul(p_attn, value)
248
- output = output.transpose(2, 3).contiguous().view(b, d, t_t)
249
- return output, p_attn
250
-
251
- @staticmethod
252
- def _attention_bias_proximal(length):
253
- r = torch.arange(length, dtype=torch.float32)
254
- diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
255
- return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
256
-
257
-
258
- class FFN(nn.Module):
259
- def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
260
- super().__init__()
261
- self.in_channels = in_channels
262
- self.out_channels = out_channels
263
- self.filter_channels = filter_channels
264
- self.kernel_size = kernel_size
265
- self.p_dropout = p_dropout
266
-
267
- self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
268
- self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
269
- self.drop = torch.nn.Dropout(p_dropout)
270
-
271
- def forward(self, x, x_mask):
272
- x = self.conv_1(x * x_mask)
273
- x = torch.relu(x)
274
- x = self.drop(x)
275
- x = self.conv_2(x * x_mask)
276
- return x * x_mask
277
-
278
-
279
- class Encoder(nn.Module):
280
- def __init__(
281
- self,
282
- hidden_channels,
283
- filter_channels,
284
- n_heads,
285
- n_layers,
286
- kernel_size=1,
287
- p_dropout=0.0,
288
- **kwargs,
289
- ):
290
- super().__init__()
291
- self.hidden_channels = hidden_channels
292
- self.filter_channels = filter_channels
293
- self.n_heads = n_heads
294
- self.n_layers = n_layers
295
- self.kernel_size = kernel_size
296
- self.p_dropout = p_dropout
297
-
298
- self.drop = torch.nn.Dropout(p_dropout)
299
- self.attn_layers = torch.nn.ModuleList()
300
- self.norm_layers_1 = torch.nn.ModuleList()
301
- self.ffn_layers = torch.nn.ModuleList()
302
- self.norm_layers_2 = torch.nn.ModuleList()
303
- for _ in range(self.n_layers):
304
- self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
305
- self.norm_layers_1.append(LayerNorm(hidden_channels))
306
- self.ffn_layers.append(
307
- FFN(
308
- hidden_channels,
309
- hidden_channels,
310
- filter_channels,
311
- kernel_size,
312
- p_dropout=p_dropout,
313
- )
314
- )
315
- self.norm_layers_2.append(LayerNorm(hidden_channels))
316
-
317
- def forward(self, x, x_mask):
318
- attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
319
- for i in range(self.n_layers):
320
- x = x * x_mask
321
- y = self.attn_layers[i](x, x, attn_mask)
322
- y = self.drop(y)
323
- x = self.norm_layers_1[i](x + y)
324
- y = self.ffn_layers[i](x, x_mask)
325
- y = self.drop(y)
326
- x = self.norm_layers_2[i](x + y)
327
- x = x * x_mask
328
- return x
329
-
330
-
331
- class TextEncoder(nn.Module):
332
- def __init__(
333
- self,
334
- encoder_type,
335
- encoder_params,
336
- duration_predictor_params,
337
- n_vocab,
338
- n_spks=1,
339
- spk_emb_dim=128,
340
- ):
341
- super().__init__()
342
- self.encoder_type = encoder_type
343
- self.n_vocab = n_vocab
344
- self.n_feats = encoder_params.n_feats
345
- self.n_channels = encoder_params.n_channels
346
- self.spk_emb_dim = spk_emb_dim
347
- self.n_spks = n_spks
348
-
349
- self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
350
- torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
351
-
352
- if encoder_params.prenet:
353
- self.prenet = ConvReluNorm(
354
- self.n_channels,
355
- self.n_channels,
356
- self.n_channels,
357
- kernel_size=5,
358
- n_layers=3,
359
- p_dropout=0.5,
360
- )
361
- else:
362
- self.prenet = lambda x, x_mask: x
363
-
364
- self.encoder = Encoder(
365
- encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
366
- encoder_params.filter_channels,
367
- encoder_params.n_heads,
368
- encoder_params.n_layers,
369
- encoder_params.kernel_size,
370
- encoder_params.p_dropout,
371
- )
372
-
373
- self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
374
- self.proj_w = DurationPredictor(
375
- self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
376
- duration_predictor_params.filter_channels_dp,
377
- duration_predictor_params.kernel_size,
378
- duration_predictor_params.p_dropout,
379
- )
380
-
381
- def forward(self, x, x_lengths, spks=None):
382
- """Run forward pass to the transformer based encoder and duration predictor
383
-
384
- Args:
385
- x (torch.Tensor): text input
386
- shape: (batch_size, max_text_length)
387
- x_lengths (torch.Tensor): text input lengths
388
- shape: (batch_size,)
389
- spks (torch.Tensor, optional): speaker ids. Defaults to None.
390
- shape: (batch_size,)
391
-
392
- Returns:
393
- mu (torch.Tensor): average output of the encoder
394
- shape: (batch_size, n_feats, max_text_length)
395
- logw (torch.Tensor): log duration predicted by the duration predictor
396
- shape: (batch_size, 1, max_text_length)
397
- x_mask (torch.Tensor): mask for the text input
398
- shape: (batch_size, 1, max_text_length)
399
- """
400
- x = self.emb(x) * math.sqrt(self.n_channels)
401
- x = torch.transpose(x, 1, -1)
402
- x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
403
-
404
- x = self.prenet(x, x_mask)
405
- if self.n_spks > 1:
406
- x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
407
- x = self.encoder(x, x_mask)
408
- mu = self.proj_m(x) * x_mask
409
-
410
- x_dp = torch.detach(x)
411
- logw = self.proj_w(x_dp, x_mask)
412
-
413
- return mu, logw, x_mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/matcha/transformer.py DELETED
@@ -1,316 +0,0 @@
1
- from typing import Any, Dict, Optional
2
-
3
- import torch
4
- import torch.nn as nn
5
- from diffusers.models.attention import (
6
- GEGLU,
7
- GELU,
8
- AdaLayerNorm,
9
- AdaLayerNormZero,
10
- ApproximateGELU,
11
- )
12
- from diffusers.models.attention_processor import Attention
13
- from diffusers.models.lora import LoRACompatibleLinear
14
- from diffusers.utils.torch_utils import maybe_allow_in_graph
15
-
16
-
17
- class SnakeBeta(nn.Module):
18
- """
19
- A modified Snake function which uses separate parameters for the magnitude of the periodic components
20
- Shape:
21
- - Input: (B, C, T)
22
- - Output: (B, C, T), same shape as the input
23
- Parameters:
24
- - alpha - trainable parameter that controls frequency
25
- - beta - trainable parameter that controls magnitude
26
- References:
27
- - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
28
- https://arxiv.org/abs/2006.08195
29
- Examples:
30
- >>> a1 = snakebeta(256)
31
- >>> x = torch.randn(256)
32
- >>> x = a1(x)
33
- """
34
-
35
- def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
36
- """
37
- Initialization.
38
- INPUT:
39
- - in_features: shape of the input
40
- - alpha - trainable parameter that controls frequency
41
- - beta - trainable parameter that controls magnitude
42
- alpha is initialized to 1 by default, higher values = higher-frequency.
43
- beta is initialized to 1 by default, higher values = higher-magnitude.
44
- alpha will be trained along with the rest of your model.
45
- """
46
- super().__init__()
47
- self.in_features = out_features if isinstance(out_features, list) else [out_features]
48
- self.proj = LoRACompatibleLinear(in_features, out_features)
49
-
50
- # initialize alpha
51
- self.alpha_logscale = alpha_logscale
52
- if self.alpha_logscale: # log scale alphas initialized to zeros
53
- self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
54
- self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
55
- else: # linear scale alphas initialized to ones
56
- self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
57
- self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)
58
-
59
- self.alpha.requires_grad = alpha_trainable
60
- self.beta.requires_grad = alpha_trainable
61
-
62
- self.no_div_by_zero = 0.000000001
63
-
64
- def forward(self, x):
65
- """
66
- Forward pass of the function.
67
- Applies the function to the input elementwise.
68
- SnakeBeta ∶= x + 1/b * sin^2 (xa)
69
- """
70
- x = self.proj(x)
71
- if self.alpha_logscale:
72
- alpha = torch.exp(self.alpha)
73
- beta = torch.exp(self.beta)
74
- else:
75
- alpha = self.alpha
76
- beta = self.beta
77
-
78
- x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)
79
-
80
- return x
81
-
82
-
83
- class FeedForward(nn.Module):
84
- r"""
85
- A feed-forward layer.
86
-
87
- Parameters:
88
- dim (`int`): The number of channels in the input.
89
- dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
90
- mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
91
- dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
92
- activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
93
- final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
94
- """
95
-
96
- def __init__(
97
- self,
98
- dim: int,
99
- dim_out: Optional[int] = None,
100
- mult: int = 4,
101
- dropout: float = 0.0,
102
- activation_fn: str = "geglu",
103
- final_dropout: bool = False,
104
- ):
105
- super().__init__()
106
- inner_dim = int(dim * mult)
107
- dim_out = dim_out if dim_out is not None else dim
108
-
109
- if activation_fn == "gelu":
110
- act_fn = GELU(dim, inner_dim)
111
- if activation_fn == "gelu-approximate":
112
- act_fn = GELU(dim, inner_dim, approximate="tanh")
113
- elif activation_fn == "geglu":
114
- act_fn = GEGLU(dim, inner_dim)
115
- elif activation_fn == "geglu-approximate":
116
- act_fn = ApproximateGELU(dim, inner_dim)
117
- elif activation_fn == "snakebeta":
118
- act_fn = SnakeBeta(dim, inner_dim)
119
-
120
- self.net = nn.ModuleList([])
121
- # project in
122
- self.net.append(act_fn)
123
- # project dropout
124
- self.net.append(nn.Dropout(dropout))
125
- # project out
126
- self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
127
- # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
128
- if final_dropout:
129
- self.net.append(nn.Dropout(dropout))
130
-
131
- def forward(self, hidden_states):
132
- for module in self.net:
133
- hidden_states = module(hidden_states)
134
- return hidden_states
135
-
136
-
137
- @maybe_allow_in_graph
138
- class BasicTransformerBlock(nn.Module):
139
- r"""
140
- A basic Transformer block.
141
-
142
- Parameters:
143
- dim (`int`): The number of channels in the input and output.
144
- num_attention_heads (`int`): The number of heads to use for multi-head attention.
145
- attention_head_dim (`int`): The number of channels in each head.
146
- dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
147
- cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
148
- only_cross_attention (`bool`, *optional*):
149
- Whether to use only cross-attention layers. In this case two cross attention layers are used.
150
- double_self_attention (`bool`, *optional*):
151
- Whether to use two self-attention layers. In this case no cross attention layers are used.
152
- activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
153
- num_embeds_ada_norm (:
154
- obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
155
- attention_bias (:
156
- obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
157
- """
158
-
159
- def __init__(
160
- self,
161
- dim: int,
162
- num_attention_heads: int,
163
- attention_head_dim: int,
164
- dropout=0.0,
165
- cross_attention_dim: Optional[int] = None,
166
- activation_fn: str = "geglu",
167
- num_embeds_ada_norm: Optional[int] = None,
168
- attention_bias: bool = False,
169
- only_cross_attention: bool = False,
170
- double_self_attention: bool = False,
171
- upcast_attention: bool = False,
172
- norm_elementwise_affine: bool = True,
173
- norm_type: str = "layer_norm",
174
- final_dropout: bool = False,
175
- ):
176
- super().__init__()
177
- self.only_cross_attention = only_cross_attention
178
-
179
- self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
180
- self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
181
-
182
- if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
183
- raise ValueError(
184
- f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
185
- f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
186
- )
187
-
188
- # Define 3 blocks. Each block has its own normalization layer.
189
- # 1. Self-Attn
190
- if self.use_ada_layer_norm:
191
- self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
192
- elif self.use_ada_layer_norm_zero:
193
- self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
194
- else:
195
- self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
196
- self.attn1 = Attention(
197
- query_dim=dim,
198
- heads=num_attention_heads,
199
- dim_head=attention_head_dim,
200
- dropout=dropout,
201
- bias=attention_bias,
202
- cross_attention_dim=cross_attention_dim if only_cross_attention else None,
203
- upcast_attention=upcast_attention,
204
- )
205
-
206
- # 2. Cross-Attn
207
- if cross_attention_dim is not None or double_self_attention:
208
- # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
209
- # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
210
- # the second cross attention block.
211
- self.norm2 = (
212
- AdaLayerNorm(dim, num_embeds_ada_norm)
213
- if self.use_ada_layer_norm
214
- else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
215
- )
216
- self.attn2 = Attention(
217
- query_dim=dim,
218
- cross_attention_dim=cross_attention_dim if not double_self_attention else None,
219
- heads=num_attention_heads,
220
- dim_head=attention_head_dim,
221
- dropout=dropout,
222
- bias=attention_bias,
223
- upcast_attention=upcast_attention,
224
- # scale_qk=False, # uncomment this to not to use flash attention
225
- ) # is self-attn if encoder_hidden_states is none
226
- else:
227
- self.norm2 = None
228
- self.attn2 = None
229
-
230
- # 3. Feed-forward
231
- self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
232
- self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
233
-
234
- # let chunk size default to None
235
- self._chunk_size = None
236
- self._chunk_dim = 0
237
-
238
- def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
239
- # Sets chunk feed-forward
240
- self._chunk_size = chunk_size
241
- self._chunk_dim = dim
242
-
243
- def forward(
244
- self,
245
- hidden_states: torch.FloatTensor,
246
- attention_mask: Optional[torch.FloatTensor] = None,
247
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
248
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
249
- timestep: Optional[torch.LongTensor] = None,
250
- cross_attention_kwargs: Dict[str, Any] = None,
251
- class_labels: Optional[torch.LongTensor] = None,
252
- ):
253
- # Notice that normalization is always applied before the real computation in the following blocks.
254
- # 1. Self-Attention
255
- if self.use_ada_layer_norm:
256
- norm_hidden_states = self.norm1(hidden_states, timestep)
257
- elif self.use_ada_layer_norm_zero:
258
- norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
259
- hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
260
- )
261
- else:
262
- norm_hidden_states = self.norm1(hidden_states)
263
-
264
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
265
-
266
- attn_output = self.attn1(
267
- norm_hidden_states,
268
- encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
269
- attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
270
- **cross_attention_kwargs,
271
- )
272
- if self.use_ada_layer_norm_zero:
273
- attn_output = gate_msa.unsqueeze(1) * attn_output
274
- hidden_states = attn_output + hidden_states
275
-
276
- # 2. Cross-Attention
277
- if self.attn2 is not None:
278
- norm_hidden_states = (
279
- self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
280
- )
281
-
282
- attn_output = self.attn2(
283
- norm_hidden_states,
284
- encoder_hidden_states=encoder_hidden_states,
285
- attention_mask=encoder_attention_mask,
286
- **cross_attention_kwargs,
287
- )
288
- hidden_states = attn_output + hidden_states
289
-
290
- # 3. Feed-forward
291
- norm_hidden_states = self.norm3(hidden_states)
292
-
293
- if self.use_ada_layer_norm_zero:
294
- norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
295
-
296
- if self._chunk_size is not None:
297
- # "feed_forward_chunk_size" can be used to save memory
298
- if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
299
- raise ValueError(
300
- f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
301
- )
302
-
303
- num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
304
- ff_output = torch.cat(
305
- [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
306
- dim=self._chunk_dim,
307
- )
308
- else:
309
- ff_output = self.ff(norm_hidden_states)
310
-
311
- if self.use_ada_layer_norm_zero:
312
- ff_output = gate_mlp.unsqueeze(1) * ff_output
313
-
314
- hidden_states = ff_output + hidden_states
315
-
316
- return hidden_states
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/s3gen.py DELETED
@@ -1,298 +0,0 @@
1
- # Modified from CosyVoice https://github.com/FunAudioLLM/CosyVoice
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import logging
16
-
17
- import numpy as np
18
- import torch
19
- import torchaudio as ta
20
- from functools import lru_cache
21
- from typing import Optional
22
-
23
- from ..s3tokenizer import S3_SR, SPEECH_VOCAB_SIZE, S3Tokenizer
24
- from .const import S3GEN_SR
25
- from .flow import CausalMaskedDiffWithXvec
26
- from .xvector import CAMPPlus
27
- from .utils.mel import mel_spectrogram
28
- from .f0_predictor import ConvRNNF0Predictor
29
- from .hifigan import HiFTGenerator
30
- from .transformer.upsample_encoder import UpsampleConformerEncoder
31
- from .flow_matching import CausalConditionalCFM
32
- from .decoder import ConditionalDecoder
33
- from .configs import CFM_PARAMS
34
-
35
-
36
- def drop_invalid_tokens(x):
37
- assert len(x.shape) <= 2 and x.shape[0] == 1, "only batch size of one allowed for now"
38
- return x[x < SPEECH_VOCAB_SIZE]
39
-
40
-
41
- # TODO: global resampler cache
42
- @lru_cache(100)
43
- def get_resampler(src_sr, dst_sr, device):
44
- return ta.transforms.Resample(src_sr, dst_sr).to(device)
45
-
46
-
47
- class S3Token2Mel(torch.nn.Module):
48
- """
49
- CosyVoice2's CFM decoder maps S3 speech tokens to mel-spectrograms.
50
-
51
- TODO: make these modules configurable?
52
- """
53
- def __init__(self):
54
- super().__init__()
55
- self.tokenizer = S3Tokenizer("speech_tokenizer_v2_25hz")
56
- self.mel_extractor = mel_spectrogram # TODO: make it a torch module?
57
- self.speaker_encoder = CAMPPlus() # use default args
58
-
59
- encoder = UpsampleConformerEncoder(
60
- output_size=512,
61
- attention_heads=8,
62
- linear_units=2048,
63
- num_blocks=6,
64
- dropout_rate=0.1,
65
- positional_dropout_rate=0.1,
66
- attention_dropout_rate=0.1,
67
- normalize_before=True,
68
- input_layer='linear',
69
- pos_enc_layer_type='rel_pos_espnet',
70
- selfattention_layer_type='rel_selfattn',
71
- input_size=512,
72
- use_cnn_module=False,
73
- macaron_style=False,
74
- )
75
-
76
- estimator = ConditionalDecoder(
77
- in_channels=320,
78
- out_channels=80,
79
- causal=True,
80
- channels=[256],
81
- dropout=0.0,
82
- attention_head_dim=64,
83
- n_blocks=4,
84
- num_mid_blocks=12,
85
- num_heads=8,
86
- act_fn='gelu',
87
- )
88
- cfm_params = CFM_PARAMS
89
- decoder = CausalConditionalCFM(
90
- spk_emb_dim=80,
91
- cfm_params=cfm_params,
92
- estimator=estimator,
93
- )
94
-
95
- self.flow = CausalMaskedDiffWithXvec(
96
- encoder=encoder,
97
- decoder=decoder
98
- )
99
-
100
- self.resamplers = {}
101
-
102
- @property
103
- def device(self):
104
- params = self.tokenizer.parameters()
105
- return next(params).device
106
-
107
- def embed_ref(
108
- self,
109
- ref_wav: torch.Tensor,
110
- ref_sr: int,
111
- device="auto",
112
- ref_fade_out=True,
113
- ):
114
- device = self.device if device == "auto" else device
115
- if isinstance(ref_wav, np.ndarray):
116
- ref_wav = torch.from_numpy(ref_wav).float()
117
-
118
- if ref_wav.device != device:
119
- ref_wav = ref_wav.to(device)
120
-
121
- if len(ref_wav.shape) == 1:
122
- ref_wav = ref_wav.unsqueeze(0) # (B, L)
123
-
124
- if ref_wav.size(1) > 10 * ref_sr:
125
- print("WARNING: cosydec received ref longer than 10s")
126
-
127
- ref_wav_24 = ref_wav
128
- if ref_sr != S3GEN_SR:
129
- ref_wav_24 = get_resampler(ref_sr, S3GEN_SR, device)(ref_wav)
130
-
131
- ref_mels_24 = self.mel_extractor(ref_wav_24).transpose(1, 2).to(device)
132
- ref_mels_24_len = None
133
-
134
- # Resample to 16kHz
135
- ref_wav_16 = get_resampler(ref_sr, S3_SR, device)(ref_wav).to(device)
136
-
137
- # Speaker embedding
138
- ref_x_vector = self.speaker_encoder.inference(ref_wav_16)
139
-
140
- # Tokenize 16khz reference
141
- ref_speech_tokens, ref_speech_token_lens = self.tokenizer(ref_wav_16)
142
-
143
- # Make sure mel_len = 2 * stoken_len (happens when the input is not padded to multiple of 40ms)
144
- if ref_mels_24.shape[1] != 2 * ref_speech_tokens.shape[1]:
145
- logging.warning(
146
- "Reference mel length is not equal to 2 * reference token length.\n"
147
- )
148
- ref_speech_tokens = ref_speech_tokens[:, :ref_mels_24.shape[1] // 2]
149
- ref_speech_token_lens[0] = ref_speech_tokens.shape[1]
150
-
151
- return dict(
152
- prompt_token=ref_speech_tokens.to(device),
153
- prompt_token_len=ref_speech_token_lens,
154
- prompt_feat=ref_mels_24,
155
- prompt_feat_len=ref_mels_24_len,
156
- embedding=ref_x_vector,
157
- )
158
-
159
- def forward(
160
- self,
161
- speech_tokens: torch.LongTensor,
162
- # locally-computed ref embedding (mutex with ref_dict)
163
- ref_wav: Optional[torch.Tensor],
164
- ref_sr: Optional[int],
165
- # pre-computed ref embedding (prod API)
166
- ref_dict: Optional[dict] = None,
167
- finalize: bool = False,
168
- ):
169
- """
170
- Generate waveforms from S3 speech tokens and a reference waveform, which the speaker timbre is inferred from.
171
-
172
- NOTE:
173
- - The speaker encoder accepts 16 kHz waveform.
174
- - S3TokenizerV2 accepts 16 kHz waveform.
175
- - The mel-spectrogram for the reference assumes 24 kHz input signal.
176
- - This function is designed for batch_size=1 only.
177
-
178
- Args
179
- ----
180
- - `speech_tokens`: S3 speech tokens [B=1, T]
181
- - `ref_wav`: reference waveform (`torch.Tensor` with shape=[B=1, T])
182
- - `ref_sr`: reference sample rate
183
- - `finalize`: whether streaming is finished or not. Note that if False, the last 3 tokens will be ignored.
184
- """
185
- assert (ref_wav is None) ^ (ref_dict is None), f"Must provide exactly one of ref_wav or ref_dict (got {ref_wav} and {ref_dict})"
186
-
187
- if ref_dict is None:
188
- ref_dict = self.embed_ref(ref_wav, ref_sr)
189
- else:
190
- # type/device casting (all values will be numpy if it's from a prod API call)
191
- for rk in list(ref_dict):
192
- if isinstance(ref_dict[rk], np.ndarray):
193
- ref_dict[rk] = torch.from_numpy(ref_dict[rk])
194
- if torch.is_tensor(ref_dict[rk]):
195
- ref_dict[rk] = ref_dict[rk].to(self.device)
196
-
197
- if len(speech_tokens.shape) == 1:
198
- speech_tokens = speech_tokens.unsqueeze(0)
199
-
200
- # assert speech_tokens.shape[0] == 1, "only batch size of one allowed for now"
201
- speech_token_lens = torch.LongTensor([speech_tokens.size(1)]).to(self.device)
202
-
203
- output_mels, _ = self.flow.inference(
204
- token=speech_tokens,
205
- token_len=speech_token_lens,
206
- finalize=finalize,
207
- **ref_dict,
208
- )
209
- return output_mels
210
-
211
-
212
- class S3Token2Wav(S3Token2Mel):
213
- """
214
- The decoder of CosyVoice2 is a concat of token-to-mel (CFM) and a mel-to-waveform (HiFiGAN) modules.
215
-
216
- TODO: make these modules configurable?
217
- """
218
-
219
- def __init__(self):
220
- super().__init__()
221
-
222
- f0_predictor = ConvRNNF0Predictor()
223
- self.mel2wav = HiFTGenerator(
224
- sampling_rate=S3GEN_SR,
225
- upsample_rates=[8, 5, 3],
226
- upsample_kernel_sizes=[16, 11, 7],
227
- source_resblock_kernel_sizes=[7, 7, 11],
228
- source_resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
229
- f0_predictor=f0_predictor,
230
- )
231
-
232
- # silence out a few ms and fade audio in to reduce artifacts
233
- n_trim = S3GEN_SR // 50 # 20ms = half of a frame
234
- trim_fade = torch.zeros(2 * n_trim)
235
- trim_fade[n_trim:] = (torch.cos(torch.linspace(torch.pi, 0, n_trim)) + 1) / 2
236
- self.register_buffer("trim_fade", trim_fade, persistent=False) # (buffers get automatic device casting)
237
-
238
- def forward(
239
- self,
240
- speech_tokens,
241
- # locally-computed ref embedding (mutex with ref_dict)
242
- ref_wav: Optional[torch.Tensor],
243
- ref_sr: Optional[int],
244
- # pre-computed ref embedding (prod API)
245
- ref_dict: Optional[dict] = None,
246
- finalize: bool = False
247
- ):
248
- output_mels = super().forward(speech_tokens, ref_wav=ref_wav, ref_sr=ref_sr, ref_dict=ref_dict, finalize=finalize)
249
-
250
- # TODO jrm: ignoring the speed control (mel interpolation) and the HiFTGAN caching mechanisms for now.
251
- hift_cache_source = torch.zeros(1, 1, 0).to(self.device)
252
-
253
- output_wavs, *_ = self.mel2wav.inference(speech_feat=output_mels, cache_source=hift_cache_source)
254
-
255
- if not self.training:
256
- # NOTE: ad-hoc method to reduce "spillover" from the reference clip.
257
- output_wavs[:, :len(self.trim_fade)] *= self.trim_fade
258
-
259
- return output_wavs
260
-
261
- @torch.inference_mode()
262
- def flow_inference(
263
- self,
264
- speech_tokens,
265
- # locally-computed ref embedding (mutex with ref_dict)
266
- ref_wav: Optional[torch.Tensor] = None,
267
- ref_sr: Optional[int] = None,
268
- # pre-computed ref embedding (prod API)
269
- ref_dict: Optional[dict] = None,
270
- finalize: bool = False,
271
- ):
272
- return super().forward(speech_tokens, ref_wav=ref_wav, ref_sr=ref_sr, ref_dict=ref_dict, finalize=finalize)
273
-
274
- @torch.inference_mode()
275
- def hift_inference(self, speech_feat, cache_source: torch.Tensor = None):
276
- if cache_source is None:
277
- cache_source = torch.zeros(1, 1, 0).to(self.device)
278
- return self.mel2wav.inference(speech_feat=speech_feat, cache_source=cache_source)
279
-
280
- @torch.inference_mode()
281
- def inference(
282
- self,
283
- speech_tokens,
284
- # locally-computed ref embedding (mutex with ref_dict)
285
- ref_wav: Optional[torch.Tensor] = None,
286
- ref_sr: Optional[int] = None,
287
- # pre-computed ref embedding (prod API)
288
- ref_dict: Optional[dict] = None,
289
- cache_source: torch.Tensor = None, # NOTE: this arg is for streaming, it can probably be removed here
290
- finalize: bool = True,
291
- ):
292
- output_mels = self.flow_inference(speech_tokens, ref_wav=ref_wav, ref_sr=ref_sr, ref_dict=ref_dict, finalize=finalize)
293
- output_wavs, output_sources = self.hift_inference(output_mels, cache_source)
294
-
295
- # NOTE: ad-hoc method to reduce "spillover" from the reference clip.
296
- output_wavs[:, :len(self.trim_fade)] *= self.trim_fade
297
-
298
- return output_wavs, output_sources
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/transformer/__init__.py DELETED
File without changes
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (165 Bytes)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/activation.cpython-310.pyc DELETED
Binary file (2.49 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/attention.cpython-310.pyc DELETED
Binary file (9.34 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/convolution.cpython-310.pyc DELETED
Binary file (3.07 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/embedding.cpython-310.pyc DELETED
Binary file (9.53 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/encoder_layer.cpython-310.pyc DELETED
Binary file (7.34 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/positionwise_feed_forward.cpython-310.pyc DELETED
Binary file (3.8 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/subsampling.cpython-310.pyc DELETED
Binary file (9.84 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/__pycache__/upsample_encoder.cpython-310.pyc DELETED
Binary file (10 kB)
 
chatterbox/src/chatterbox/models/s3gen/transformer/activation.py DELETED
@@ -1,84 +0,0 @@
1
- # Copyright (c) 2020 Johns Hopkins University (Shinji Watanabe)
2
- # 2020 Northwestern Polytechnical University (Pengcheng Guo)
3
- # 2020 Mobvoi Inc (Binbin Zhang)
4
- # 2024 Alibaba Inc (Xiang Lyu)
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- """Swish() activation function for Conformer."""
18
-
19
- import torch
20
- from torch import nn, sin, pow
21
- from torch.nn import Parameter
22
-
23
-
24
- class Swish(torch.nn.Module):
25
- """Construct an Swish object."""
26
-
27
- def forward(self, x: torch.Tensor) -> torch.Tensor:
28
- """Return Swish activation function."""
29
- return x * torch.sigmoid(x)
30
-
31
-
32
- # Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
33
- # LICENSE is in incl_licenses directory.
34
- class Snake(nn.Module):
35
- '''
36
- Implementation of a sine-based periodic activation function
37
- Shape:
38
- - Input: (B, C, T)
39
- - Output: (B, C, T), same shape as the input
40
- Parameters:
41
- - alpha - trainable parameter
42
- References:
43
- - This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
44
- https://arxiv.org/abs/2006.08195
45
- Examples:
46
- >>> a1 = snake(256)
47
- >>> x = torch.randn(256)
48
- >>> x = a1(x)
49
- '''
50
- def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
51
- '''
52
- Initialization.
53
- INPUT:
54
- - in_features: shape of the input
55
- - alpha: trainable parameter
56
- alpha is initialized to 1 by default, higher values = higher-frequency.
57
- alpha will be trained along with the rest of your model.
58
- '''
59
- super(Snake, self).__init__()
60
- self.in_features = in_features
61
-
62
- # initialize alpha
63
- self.alpha_logscale = alpha_logscale
64
- if self.alpha_logscale: # log scale alphas initialized to zeros
65
- self.alpha = Parameter(torch.zeros(in_features) * alpha)
66
- else: # linear scale alphas initialized to ones
67
- self.alpha = Parameter(torch.ones(in_features) * alpha)
68
-
69
- self.alpha.requires_grad = alpha_trainable
70
-
71
- self.no_div_by_zero = 0.000000001
72
-
73
- def forward(self, x):
74
- '''
75
- Forward pass of the function.
76
- Applies the function to the input elementwise.
77
- Snake ∶= x + 1/a * sin^2 (xa)
78
- '''
79
- alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
80
- if self.alpha_logscale:
81
- alpha = torch.exp(alpha)
82
- x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
83
-
84
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
chatterbox/src/chatterbox/models/s3gen/transformer/attention.py DELETED
@@ -1,330 +0,0 @@
1
- # Copyright (c) 2019 Shigeki Karita
2
- # 2020 Mobvoi Inc (Binbin Zhang)
3
- # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn)
4
- # 2024 Alibaba Inc (Xiang Lyu)
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- """Multi-Head Attention layer definition."""
18
-
19
- import math
20
- from typing import Tuple
21
-
22
- import torch
23
- from torch import nn
24
-
25
-
26
- class MultiHeadedAttention(nn.Module):
27
- """Multi-Head Attention layer.
28
-
29
- Args:
30
- n_head (int): The number of heads.
31
- n_feat (int): The number of features.
32
- dropout_rate (float): Dropout rate.
33
-
34
- """
35
-
36
- def __init__(self,
37
- n_head: int,
38
- n_feat: int,
39
- dropout_rate: float,
40
- key_bias: bool = True):
41
- """Construct an MultiHeadedAttention object."""
42
- super().__init__()
43
- assert n_feat % n_head == 0
44
- # We assume d_v always equals d_k
45
- self.d_k = n_feat // n_head
46
- self.h = n_head
47
- self.linear_q = nn.Linear(n_feat, n_feat)
48
- self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias)
49
- self.linear_v = nn.Linear(n_feat, n_feat)
50
- self.linear_out = nn.Linear(n_feat, n_feat)
51
- self.dropout = nn.Dropout(p=dropout_rate)
52
-
53
- def forward_qkv(
54
- self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
55
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
56
- """Transform query, key and value.
57
-
58
- Args:
59
- query (torch.Tensor): Query tensor (#batch, time1, size).
60
- key (torch.Tensor): Key tensor (#batch, time2, size).
61
- value (torch.Tensor): Value tensor (#batch, time2, size).
62
-
63
- Returns:
64
- torch.Tensor: Transformed query tensor, size
65
- (#batch, n_head, time1, d_k).
66
- torch.Tensor: Transformed key tensor, size
67
- (#batch, n_head, time2, d_k).
68
- torch.Tensor: Transformed value tensor, size
69
- (#batch, n_head, time2, d_k).
70
-
71
- """
72
- n_batch = query.size(0)
73
- q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
74
- k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
75
- v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
76
- q = q.transpose(1, 2) # (batch, head, time1, d_k)
77
- k = k.transpose(1, 2) # (batch, head, time2, d_k)
78
- v = v.transpose(1, 2) # (batch, head, time2, d_k)
79
-
80
- return q, k, v
81
-
82
- def forward_attention(
83
- self,
84
- value: torch.Tensor,
85
- scores: torch.Tensor,
86
- mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool)
87
- ) -> torch.Tensor:
88
- """Compute attention context vector.
89
-
90
- Args:
91
- value (torch.Tensor): Transformed value, size
92
- (#batch, n_head, time2, d_k).
93
- scores (torch.Tensor): Attention score, size
94
- (#batch, n_head, time1, time2).
95
- mask (torch.Tensor): Mask, size (#batch, 1, time2) or
96
- (#batch, time1, time2), (0, 0, 0) means fake mask.
97
-
98
- Returns:
99
- torch.Tensor: Transformed value (#batch, time1, d_model)
100
- weighted by the attention score (#batch, time1, time2).
101
-
102
- """
103
- n_batch = value.size(0)
104
- # NOTE(xcsong): When will `if mask.size(2) > 0` be True?
105
- # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the
106
- # 1st chunk to ease the onnx export.]
107
- # 2. pytorch training
108
- if mask.size(2) > 0: # time2 > 0
109
- mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
110
- # For last chunk, time2 might be larger than scores.size(-1)
111
- mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2)
112
- scores = scores.masked_fill(mask, -float('inf'))
113
- attn = torch.softmax(scores, dim=-1).masked_fill(
114
- mask, 0.0) # (batch, head, time1, time2)
115
- # NOTE(xcsong): When will `if mask.size(2) > 0` be False?
116
- # 1. onnx(16/-1, -1/-1, 16/0)
117
- # 2. jit (16/-1, -1/-1, 16/0, 16/4)
118
- else:
119
- attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
120
-
121
- p_attn = self.dropout(attn)
122
- x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
123
- x = (x.transpose(1, 2).contiguous().view(n_batch, -1,
124
- self.h * self.d_k)
125
- ) # (batch, time1, d_model)
126
-
127
- return self.linear_out(x) # (batch, time1, d_model)
128
-
129
- def forward(
130
- self,
131
- query: torch.Tensor,
132
- key: torch.Tensor,
133
- value: torch.Tensor,
134
- mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
135
- pos_emb: torch.Tensor = torch.empty(0),
136
- cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
137
- ) -> Tuple[torch.Tensor, torch.Tensor]:
138
- """Compute scaled dot product attention.
139
-
140
- Args:
141
- query (torch.Tensor): Query tensor (#batch, time1, size).
142
- key (torch.Tensor): Key tensor (#batch, time2, size).
143
- value (torch.Tensor): Value tensor (#batch, time2, size).
144
- mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
145
- (#batch, time1, time2).
146
- 1.When applying cross attention between decoder and encoder,
147
- the batch padding mask for input is in (#batch, 1, T) shape.
148
- 2.When applying self attention of encoder,
149
- the mask is in (#batch, T, T) shape.
150
- 3.When applying self attention of decoder,
151
- the mask is in (#batch, L, L) shape.
152
- 4.If the different position in decoder see different block
153
- of the encoder, such as Mocha, the passed in mask could be
154
- in (#batch, L, T) shape. But there is no such case in current
155
- CosyVoice.
156
- cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
157
- where `cache_t == chunk_size * num_decoding_left_chunks`
158
- and `head * d_k == size`
159
-
160
-
161
- Returns:
162
- torch.Tensor: Output tensor (#batch, time1, d_model).
163
- torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
164
- where `cache_t == chunk_size * num_decoding_left_chunks`
165
- and `head * d_k == size`
166
-
167
- """
168
- q, k, v = self.forward_qkv(query, key, value)
169
-
170
- # NOTE(xcsong):
171
- # when export onnx model, for 1st chunk, we feed
172
- # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
173
- # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
174
- # In all modes, `if cache.size(0) > 0` will alwayse be `True`
175
- # and we will always do splitting and
176
- # concatnation(this will simplify onnx export). Note that
177
- # it's OK to concat & split zero-shaped tensors(see code below).
178
- # when export jit model, for 1st chunk, we always feed
179
- # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
180
- # >>> a = torch.ones((1, 2, 0, 4))
181
- # >>> b = torch.ones((1, 2, 3, 4))
182
- # >>> c = torch.cat((a, b), dim=2)
183
- # >>> torch.equal(b, c) # True
184
- # >>> d = torch.split(a, 2, dim=-1)
185
- # >>> torch.equal(d[0], d[1]) # True
186
- if cache.size(0) > 0:
187
- key_cache, value_cache = torch.split(cache,
188
- cache.size(-1) // 2,
189
- dim=-1)
190
- k = torch.cat([key_cache, k], dim=2)
191
- v = torch.cat([value_cache, v], dim=2)
192
- # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
193
- # non-trivial to calculate `next_cache_start` here.
194
- new_cache = torch.cat((k, v), dim=-1)
195
-
196
- scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
197
- return self.forward_attention(v, scores, mask), new_cache
198
-
199
-
200
- class RelPositionMultiHeadedAttention(MultiHeadedAttention):
201
- """Multi-Head Attention layer with relative position encoding.
202
- Paper: https://arxiv.org/abs/1901.02860
203
- Args:
204
- n_head (int): The number of heads.
205
- n_feat (int): The number of features.
206
- dropout_rate (float): Dropout rate.
207
- """
208
-
209
- def __init__(self,
210
- n_head: int,
211
- n_feat: int,
212
- dropout_rate: float,
213
- key_bias: bool = True):
214
- """Construct an RelPositionMultiHeadedAttention object."""
215
- super().__init__(n_head, n_feat, dropout_rate, key_bias)
216
- # linear transformation for positional encoding
217
- self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
218
- # these two learnable bias are used in matrix c and matrix d
219
- # as described in https://arxiv.org/abs/1901.02860 Section 3.3
220
- self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
221
- self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
222
- torch.nn.init.xavier_uniform_(self.pos_bias_u)
223
- torch.nn.init.xavier_uniform_(self.pos_bias_v)
224
-
225
- def rel_shift(self, x: torch.Tensor) -> torch.Tensor:
226
- """Compute relative positional encoding.
227
-
228
- Args:
229
- x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1).
230
- time1 means the length of query vector.
231
-
232
- Returns:
233
- torch.Tensor: Output tensor.
234
-
235
- """
236
- zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1),
237
- device=x.device,
238
- dtype=x.dtype)
239
- x_padded = torch.cat([zero_pad, x], dim=-1)
240
-
241
- x_padded = x_padded.view(x.size()[0],
242
- x.size()[1],
243
- x.size(3) + 1, x.size(2))
244
- x = x_padded[:, :, 1:].view_as(x)[
245
- :, :, :, : x.size(-1) // 2 + 1
246
- ] # only keep the positions from 0 to time2
247
- return x
248
-
249
- def forward(
250
- self,
251
- query: torch.Tensor,
252
- key: torch.Tensor,
253
- value: torch.Tensor,
254
- mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
255
- pos_emb: torch.Tensor = torch.empty(0),
256
- cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
257
- ) -> Tuple[torch.Tensor, torch.Tensor]:
258
- """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
259
- Args:
260
- query (torch.Tensor): Query tensor (#batch, time1, size).
261
- key (torch.Tensor): Key tensor (#batch, time2, size).
262
- value (torch.Tensor): Value tensor (#batch, time2, size).
263
- mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
264
- (#batch, time1, time2), (0, 0, 0) means fake mask.
265
- pos_emb (torch.Tensor): Positional embedding tensor
266
- (#batch, time2, size).
267
- cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
268
- where `cache_t == chunk_size * num_decoding_left_chunks`
269
- and `head * d_k == size`
270
- Returns:
271
- torch.Tensor: Output tensor (#batch, time1, d_model).
272
- torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
273
- where `cache_t == chunk_size * num_decoding_left_chunks`
274
- and `head * d_k == size`
275
- """
276
- q, k, v = self.forward_qkv(query, key, value)
277
- q = q.transpose(1, 2) # (batch, time1, head, d_k)
278
-
279
- # NOTE(xcsong):
280
- # when export onnx model, for 1st chunk, we feed
281
- # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode)
282
- # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode).
283
- # In all modes, `if cache.size(0) > 0` will alwayse be `True`
284
- # and we will always do splitting and
285
- # concatnation(this will simplify onnx export). Note that
286
- # it's OK to concat & split zero-shaped tensors(see code below).
287
- # when export jit model, for 1st chunk, we always feed
288
- # cache(0, 0, 0, 0) since jit supports dynamic if-branch.
289
- # >>> a = torch.ones((1, 2, 0, 4))
290
- # >>> b = torch.ones((1, 2, 3, 4))
291
- # >>> c = torch.cat((a, b), dim=2)
292
- # >>> torch.equal(b, c) # True
293
- # >>> d = torch.split(a, 2, dim=-1)
294
- # >>> torch.equal(d[0], d[1]) # True
295
- if cache.size(0) > 0:
296
- key_cache, value_cache = torch.split(cache,
297
- cache.size(-1) // 2,
298
- dim=-1)
299
- k = torch.cat([key_cache, k], dim=2)
300
- v = torch.cat([value_cache, v], dim=2)
301
- # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's
302
- # non-trivial to calculate `next_cache_start` here.
303
- new_cache = torch.cat((k, v), dim=-1)
304
-
305
- n_batch_pos = pos_emb.size(0)
306
- p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
307
- p = p.transpose(1, 2) # (batch, head, time1, d_k)
308
-
309
- # (batch, head, time1, d_k)
310
- q_with_bias_u = (q + self.pos_bias_u.to(q.device)).transpose(1, 2)
311
- # (batch, head, time1, d_k)
312
- q_with_bias_v = (q + self.pos_bias_v.to(q.device)).transpose(1, 2)
313
-
314
- # compute attention score
315
- # first compute matrix a and matrix c
316
- # as described in https://arxiv.org/abs/1901.02860 Section 3.3
317
- # (batch, head, time1, time2)
318
- matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
319
-
320
- # compute matrix b and matrix d
321
- # (batch, head, time1, time2)
322
- matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
323
- # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used
324
- if matrix_ac.shape != matrix_bd.shape:
325
- matrix_bd = self.rel_shift(matrix_bd)
326
-
327
- scores = (matrix_ac + matrix_bd) / math.sqrt(
328
- self.d_k) # (batch, head, time1, time2)
329
-
330
- return self.forward_attention(v, scores, mask), new_cache