Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from transformers import pipeline | |
pipe=pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.bfloat16, device="cpu") | |
#pipe=pipeline("summarization", model="facebook/bart-large-cnn", torch_dtype=torch.bfloat16, device="cpu") | |
from pydantic import BaseModel, PydanticUserError, ConfigDict | |
from pydantic import BaseModel, ConfigDict | |
class MyModel(BaseModel): | |
request: 'starlette.requests.Request' | |
model_config = ConfigDict(arbitrary_types_allowed=True) | |
from pydantic_core import core_schema | |
from starlette.requests import Request | |
def get_pydantic_core_schema(request_type, handler): | |
return core_schema.any_schema() | |
Request.__get_pydantic_core_schema__ = get_pydantic_core_schema | |
#pipe = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6") | |
text_summary=pipeline(task="summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.bfloat16) | |
def summary(input): | |
#max_input_len=1024 | |
#if len(full_text.split()) > max_input_len: | |
# full_text = " ".join(full_text.split()[:max_input_len]) | |
output=text_summary(input) | |
return output[0]['summary_text'] | |
gr.close_all() | |
demo=gr.Interface(fn=summary, | |
inputs=[gr.Textbox(label='Input Text to Summarize', lines=1)], | |
outputs=[gr.Textbox(label='Summarized Text', lines=4)], | |
title='KS Text Summarizer', | |
description='This application will be used to summarize a corpus') | |
demo.launch() |