Kaori1707 commited on
Commit
91c4851
·
1 Parent(s): 39d7cfe

update application

Browse files
Files changed (1) hide show
  1. app.py +39 -14
app.py CHANGED
@@ -3,7 +3,6 @@ import numpy as np
3
  import torch
4
  import cv2
5
  import os
6
- from random import randint
7
  from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor
8
 
9
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@@ -44,6 +43,15 @@ def detection(image):
44
  s = f"Found {len(probs)} objects"
45
  return image, s
46
 
 
 
 
 
 
 
 
 
 
47
  title = " AISeed AI Application Demo "
48
  description = "# A Demo of Deep Learning for Object Detection"
49
  example_list = [["examples/" + example] for example in os.listdir("examples")]
@@ -51,18 +59,35 @@ example_list = [["examples/" + example] for example in os.listdir("examples")]
51
  with gr.Blocks() as demo:
52
  demo.title = title
53
  gr.Markdown(description)
54
- with gr.Row():
55
- with gr.Column():
56
- im = gr.Image(label="Input Image")
57
- im_2 = gr.Image(label="Output Image")
58
- with gr.Column():
59
- text = gr.Textbox(label="Number of objects")
60
- btn1 = gr.Button(value="Who wears mask?")
61
- btn1.click(detection, inputs=[im], outputs=[im_2, text])
62
-
63
- gr.Examples(examples=example_list,
64
- inputs=[im],
65
- outputs=[im_2])
66
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  if __name__ == "__main__":
68
  demo.launch()
 
3
  import torch
4
  import cv2
5
  import os
 
6
  from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor
7
 
8
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
43
  s = f"Found {len(probs)} objects"
44
  return image, s
45
 
46
+ def video_detection(frames):
47
+ out = cv2.VideoWriter('outpy.avi',cv2.VideoWriter_fourcc('M','J','P','G'), 30, (640, 320))
48
+ for frame in frames:
49
+ out.write(frame)
50
+
51
+ out.release()
52
+ return "outpy.avi"
53
+
54
+
55
  title = " AISeed AI Application Demo "
56
  description = "# A Demo of Deep Learning for Object Detection"
57
  example_list = [["examples/" + example] for example in os.listdir("examples")]
 
59
  with gr.Blocks() as demo:
60
  demo.title = title
61
  gr.Markdown(description)
62
+ with gr.Tabs():
63
+ with gr.TabItem("for Images"):
64
+ with gr.Row():
65
+ with gr.Column():
66
+ im = gr.Image(label="Input Image")
67
+ im_2 = gr.Image(label="Output Image")
68
+ with gr.Column():
69
+ text = gr.Textbox(label="Number of objects")
70
+ btn1 = gr.Button(value="Who wears mask?")
71
+ btn1.click(detection, inputs=[im], outputs=[im_2, text])
72
+
73
+ gr.Examples(examples=example_list,
74
+ inputs=[im],
75
+ outputs=[im_2])
76
+ # with gr.TabItem("for Videos"):
77
+ # with gr.Row():
78
+ # with gr.Column():
79
+ # text1 = gr.Textbox(label="Number of objects")
80
+ # with gr.Column():
81
+ # text2 = gr.Textbox(label="Number of objects")
82
+
83
+ with gr.Tab("for streaming"):
84
+ with gr.Row():
85
+ with gr.Column():
86
+ input_video = gr.Video(source="webcam", label="Input")
87
+ btn3 = gr.Button(value="Who wears mask?")
88
+ output_video = gr.Video(label="Output Video")
89
+ btn3.click(video_detection, inputs=[input_video], outputs=[output_video])
90
+
91
+
92
  if __name__ == "__main__":
93
  demo.launch()