KanvaBhatia commited on
Commit
68647bf
1 Parent(s): 89e1e33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -6
app.py CHANGED
@@ -31,11 +31,15 @@ model = torch.load(("model.pth"), map_location=torch.device('cpu'))
31
  model.to(DEVICE)
32
  model.eval()
33
 
34
- def identity(x):
35
- print(x)
36
  # audio = mp.AudioFileClip(x)
37
- wav_file = x
38
  # audio.write_audiofile(wav_file)
 
 
 
 
39
  print("Wav stored.")
40
  meta = AudioMetaData(-1, -1, -1, -1, "")
41
  sr = config("sr", 48000, int, section="df")
@@ -63,13 +67,22 @@ def identity(x):
63
  enhanced = torch.cat(estimate, dim = -1)
64
  sr = meta.sample_rate
65
  save_audio("enhanced_aud.wav", enhanced, sr)
66
- return "enhanced_aud.wav"
 
 
 
 
 
 
 
 
 
67
 
68
  demo = gr.Interface(
69
  fn=identity,
70
  title="Audio Denoiser using DeepFilterNet V3",
71
  description="Implemented audio denoising using DeepFilterNet V3, enabled processing of larger files even on cpu, by splitting up the audio file into chunks of 1 minute each.\n\nThe processing will be very slow since it's the free version of HuggingFace, 2 second audio can take about 5 minutes.",
72
- inputs=gr.Audio(type='filepath'),
73
- outputs=gr.Audio(label="Output Audio"),
74
  )
75
  demo.launch()
 
31
  model.to(DEVICE)
32
  model.eval()
33
 
34
+ def identity(video_path):
35
+ print(video_path)
36
  # audio = mp.AudioFileClip(x)
37
+ # wav_file = x
38
  # audio.write_audiofile(wav_file)
39
+ video = mp.VideoFileClip(video_path)
40
+ audio = video.audio
41
+ wav_file = "tmp.wav"
42
+ audio.write_audiofile(wav_file)
43
  print("Wav stored.")
44
  meta = AudioMetaData(-1, -1, -1, -1, "")
45
  sr = config("sr", 48000, int, section="df")
 
67
  enhanced = torch.cat(estimate, dim = -1)
68
  sr = meta.sample_rate
69
  save_audio("enhanced_aud.wav", enhanced, sr)
70
+ audio = mp.AudioFileClip('enhanced_aud.wav')
71
+ video = mp.VideoFileClip(video_path)
72
+ final_video = video.set_audio(audio)
73
+ final_video.write_videofile("output_video.mp4",
74
+ codec='libx264',
75
+ audio_codec='aac',
76
+ temp_audiofile='temp-audio.m4a',
77
+ remove_temp=True
78
+ )
79
+ return "output_video.mp4"
80
 
81
  demo = gr.Interface(
82
  fn=identity,
83
  title="Audio Denoiser using DeepFilterNet V3",
84
  description="Implemented audio denoising using DeepFilterNet V3, enabled processing of larger files even on cpu, by splitting up the audio file into chunks of 1 minute each.\n\nThe processing will be very slow since it's the free version of HuggingFace, 2 second audio can take about 5 minutes.",
85
+ inputs=gr.Video(label="Input Video", sources="upload"),
86
+ outputs=gr.Video(label="Output Video"),
87
  )
88
  demo.launch()