Spaces:
Running
on
T4
Running
on
T4
MikkoLipsanen
commited on
Create onnx_text_recognition.py
Browse files- onnx_text_recognition.py +113 -0
onnx_text_recognition.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from optimum.onnxruntime import ORTModelForVision2Seq
|
2 |
+
from transformers import TrOCRProcessor
|
3 |
+
import numpy as np
|
4 |
+
import onnxruntime
|
5 |
+
import math
|
6 |
+
import cv2
|
7 |
+
import os
|
8 |
+
|
9 |
+
class TextRecognition:
|
10 |
+
def __init__(self,
|
11 |
+
processor_path,
|
12 |
+
model_path,
|
13 |
+
device = 'cpu',
|
14 |
+
half_precision = False,
|
15 |
+
line_threshold = 120):
|
16 |
+
self.device = device
|
17 |
+
self.half_precision = half_precision
|
18 |
+
self.line_threshold = line_threshold
|
19 |
+
self.processor_path = processor_path
|
20 |
+
self.model_path = model_path
|
21 |
+
self.processor = self.init_processor()
|
22 |
+
self.recognition_model = self.init_recognition_model()
|
23 |
+
|
24 |
+
def init_processor(self):
|
25 |
+
"""Function for initializing the processor."""
|
26 |
+
try:
|
27 |
+
processor = TrOCRProcessor.from_pretrained(self.processor_path)
|
28 |
+
return processor
|
29 |
+
except Exception as e:
|
30 |
+
print('Failed to initialize processor: %s' % e)
|
31 |
+
|
32 |
+
def init_recognition_model(self):
|
33 |
+
"""Function for initializing the text detection model."""
|
34 |
+
sess_options = onnxruntime.SessionOptions()
|
35 |
+
sess_options.intra_op_num_threads = 3
|
36 |
+
sess_options.inter_op_num_threads = 3
|
37 |
+
try:
|
38 |
+
recognition_model = ORTModelForVision2Seq.from_pretrained(self.model_path)#, session_options=sess_options, provider="CUDAExecutionProvider")
|
39 |
+
return recognition_model
|
40 |
+
except Exception as e:
|
41 |
+
print('Failed to load the text recognition model: %s' % e)
|
42 |
+
|
43 |
+
def crop_line(self, image, polygon, height, width):
|
44 |
+
"""Crops predicted text line based on the polygon coordinates
|
45 |
+
and returns binarised text line image."""
|
46 |
+
poly = np.array([[int(lst[0]), int(lst[1])] for lst in polygon])
|
47 |
+
mask = np.zeros([height, width], dtype=np.uint8)
|
48 |
+
cv2.drawContours(mask, [poly], -1, (255, 255, 255), -1, cv2.LINE_AA)
|
49 |
+
rect = cv2.boundingRect(poly)
|
50 |
+
cropped = image[rect[1]: rect[1] + rect[3], rect[0]: rect[0] + rect[2]]
|
51 |
+
|
52 |
+
mask_crop = mask[rect[1]: rect[1] + rect[3], rect[0]: rect[0] + rect[2]]
|
53 |
+
res = cv2.bitwise_and(cropped, cropped, mask = mask_crop)
|
54 |
+
|
55 |
+
wbg = np.ones_like(cropped, np.uint8) * 255
|
56 |
+
cv2.bitwise_not(wbg,wbg, mask=mask_crop)
|
57 |
+
row_image = wbg+res
|
58 |
+
return row_image
|
59 |
+
|
60 |
+
def crop_lines(self, polygons, image, height, width):
|
61 |
+
"""Returns a list of line images cropped following the detected polygon coordinates."""
|
62 |
+
cropped_lines = []
|
63 |
+
for i, polygon in enumerate(polygons):
|
64 |
+
cropped_line = self.crop_line(image, polygon, height, width)
|
65 |
+
cropped_lines.append(cropped_line)
|
66 |
+
return cropped_lines
|
67 |
+
|
68 |
+
def get_scores(self, lgscores):
|
69 |
+
"""Get exponent of log scores."""
|
70 |
+
scores = []
|
71 |
+
for lgscore in lgscores:
|
72 |
+
score = math.exp(lgscore)
|
73 |
+
scores.append(score)
|
74 |
+
return scores
|
75 |
+
|
76 |
+
def predict_text(self, cropped_lines):
|
77 |
+
"""Functions for predicting text content from the cropped line images."""
|
78 |
+
pixel_values = self.processor(cropped_lines, return_tensors="pt").pixel_values
|
79 |
+
generated_dict = self.recognition_model.generate(pixel_values.to(self.device), max_new_tokens=128, return_dict_in_generate=True, output_scores=True)
|
80 |
+
generated_ids, lgscores = generated_dict['sequences'], generated_dict['sequences_scores']
|
81 |
+
scores = self.get_scores(lgscores.tolist())
|
82 |
+
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
83 |
+
return scores, generated_text
|
84 |
+
|
85 |
+
def get_text_lines(self, cropped_lines):
|
86 |
+
scores, generated_text = [], []
|
87 |
+
if len(cropped_lines) <= self.line_threshold:
|
88 |
+
scores, generated_text = self.predict_text(cropped_lines)
|
89 |
+
else:
|
90 |
+
n = math.ceil(len(cropped_lines) / self.line_threshold)
|
91 |
+
for i in range(n):
|
92 |
+
start = int(i * self.line_threshold)
|
93 |
+
end = int(min(start + self.line_threshold, len(cropped_lines)))
|
94 |
+
sc, gt = self.predict_text(cropped_lines[start:end])
|
95 |
+
scores += sc
|
96 |
+
generated_text += gt
|
97 |
+
return scores, generated_text
|
98 |
+
|
99 |
+
def get_res_dict(self, polygons, generated_text, height, width, image_name, line_confs, scores):
|
100 |
+
"""Combines the results in a dictionary form."""
|
101 |
+
line_dicts = []
|
102 |
+
for i in range(len(generated_text)):
|
103 |
+
line_dict = {'polygon': polygons[i], 'text': generated_text[i], 'conf': line_confs[i], 'text_conf':scores[i]}
|
104 |
+
line_dicts.append(line_dict)
|
105 |
+
lines_dict = {'img_name': image_name, 'height': height, 'width': width, 'text_lines': line_dicts}
|
106 |
+
return lines_dict
|
107 |
+
|
108 |
+
def process_lines(self, polygons, image, height, width):
|
109 |
+
# Crop line images
|
110 |
+
cropped_lines = self.crop_lines(polygons, image, height, width)
|
111 |
+
# Get text predictions
|
112 |
+
scores, generated_text = self.get_text_lines(cropped_lines)
|
113 |
+
return generated_text
|